# Service Data Application Guide: H Series - 17 SEER Horizontal Discharge Modulating Heat Pump

6062831-UAG-A-0321

# General



WARNING: Cancer and Reproductive Harm – www.P65Warnings.ca.gov.

The units are tested in accordance with the following:



This Service Data Application Guide is intended to provide guidance for troubleshooting outdoor units in operation in the field. These data tables are developed using new matched systems with the outdoor unit paired with the Designated Test Combination (DTC). Variation from these published tables may exist for actual field installations, according to the specific application. The Service Data Tables provide reference refrigerant temperature and pressure, indoor delta temperature, and unit operating currents for a range of indoor and outdoor operating conditions. Refer to the Technical Guide for other technical information. Information on piping considerations and other installation instructions that may be useful to a servicing engineer have also been included in this document. For more comprehensive installation instructions, refer to the Installation Manual.

# Safety

Read these safety precautions carefully to ensure correct installation.

Note the following:

- You must match the outdoor unit with an indoor unit with refrigerant R-410A.
- Use the specified filter drier on the liquid pipe when connecting the units.
- Carefully file the indoor and outdoor unit manuals away for future reference.

A

This is a safety alert symbol. When you see this symbol on labels or in manuals, be alert to the potential for personal injury.

Understand and pay particular attention to the signal words **DANGER**, **WARNING**, or **CAUTION**.

**DANGER** indicates an **imminently** hazardous situation, which, if not avoided, <u>will result in death or serious</u> <u>injury</u>.

WARNING indicates a **potentially** hazardous situation, which, if not avoided, **could result in death or serious injury**. **CAUTION** indicates a **potentially** hazardous situation, which, if not avoided <u>may result in minor or moderate</u> <u>injury</u>. It is also used to alert against unsafe practices and hazards involving only property damage.

# 

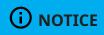
### Electrical Shock Hazard

Disconnect and lock out power before servicing. Wait 5 min to ensure that drive capacitors are discharged before servicing. Use compressor with grounded system only. Molded electrical plug must be used for connection to compressor.



Do not tamper with or bypass safety devices incorporated in this outdoor section. Any modification may cause serious injury.

# 


Incorrect installation may create a condition where the operation of the product could cause personal injury or property damage. Incorrect installation, adjustment, alteration, service, or maintenance can cause injury or property damage. Refer to this installation manual for assistance or for additional information, consult a qualified contractor, installer, or service agency.

# 

This heat pump uses R-410A refrigerant. R-410A systems operate at higher pressures than R-22 systems. Do not use R-22 service equipment or components on R-410A equipment. Service equipment must be rated for R-410A.



This product must be installed in strict compliance with the enclosed installation instructions and any applicable local, state, and national codes including, but not limited to building, electrical, and mechanical codes.



It is imperative to fasten this equipment to a sturdy base for protection against vibration, strong breeze, or earthquake. Use anchors and a base adequate to protect the unit against tipping or dislocation.

# Inspection

Inspect the unit immediately after receiving it for possible damage during transit, including copper distributor lines that may have shifted and are touching either copper lines or the cabinet. If damage is evident, the extent of the damage must be noted on the carrier's delivery receipt. A separate request for inspection by the carrier's agent must be made in writing. Contact the local distributor for more information.

# Requirements for installing or servicing R-410A equipment

- Gauge sets, hoses, refrigerant containers, and recovery system must be designed to handle the POE type oils, and the higher pressures of R-410A.
- Manifold sets must be high side and low side with low side retard.
- All hoses must have a 700 psig service pressure rating.
- Leak detectors must be designed to detect HFC refrigerant.
- Recovery equipment (including refrigerant recovery containers) must be specifically designed to handle R-410A.

# Limitations

Install the unit in accordance with all national, state, and local safety codes, and the following limitations:

- Observe the limitations for the indoor unit, coil, and appropriate accessories.
- Do not install the outdoor unit with any duct work in the air stream. The outdoor fan is the propeller type and is not designed to operate against any additional external static pressure.
- Observe the maximum and minimum conditions for operation to ensure a system that gives maximum performance with minimum service.

# Table 1: Minimum and maximum operating limit conditions

| Air         | Outdoor o | coil °F (°C) | Indoor coil °F (°C) |         |  |  |
|-------------|-----------|--------------|---------------------|---------|--|--|
| temperature | DB cool   | DB heat      | WB cool             | DB heat |  |  |
| Minimum     | 35 (2)    | -5 (-21)     | 57 (14)             | 50 (10) |  |  |
| Maximum     | 122 (50)  | 75 (24)      | 72 (22)             | 80 (27) |  |  |

(i) **Note:** See the NOTICE in the *Reduced capacity conditions* section.

#### **Reduced capacity conditions**

# **Ο** ΝΟΤΙCE

#### Inverter temperature protection

If excessive inverter temperatures are sensed, the compressor speed/capacity is reduced until an acceptable condition is reached. When the inverter temperature returns to an acceptable level, the system returns to normal operation.

# **i)** NOTICE

#### **Overcurrent and undercurrent protection**

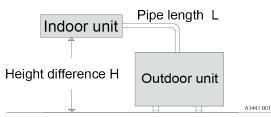
If a low or high current condition is sensed, the compressor speed/capacity is reduced until an acceptable current level is reached. When the system reaches an acceptable current level, the compressor and fan return to normal operating conditions.

# **(i)** NOTICE

#### Overvoltage and undervoltage protection

If a low or high supply voltage condition is sensed (below 187 VAC or above 265 VAC), the compressor speed/capacity is automatically reduced until an acceptable voltage level is reached. When an acceptable voltage level is sensed, the system automatically returns to a normal state of operation.

# 


#### Low ambient protection

Cooling mode: The unit automatically adjusts to maintain cooling operation in outdoor ambient conditions down to 35°F (2°C). The unit reduces capacity and low ambient protection (cooling mode) or cycles off if asked to provide cooling when the outdoor temperature is at or below these conditions. Heating mode: The unit provides compressor heat down to an outdoor ambient temperature of -5°F (-29°C). As the outdoor ambient temperature reduces, available heat reduces for all air source heat pumps.

# Piping considerations

When using more than 15 ft of interconnecting tubing, see Table 2 for charging. For long-line applications, interconnecting lines over 100 ft must be installed with liquid line solenoid. Refer to the *Piping Application Guide* for more information.

#### Figure 1: Refrigerant piping



### Table 2: Refrigerant piping

| Model                 | Maximum pipe | Maximum<br>height<br>difference (H) | Additional<br>refrigerant -<br>exceeding 15<br>ft (4.6 m) |  |
|-----------------------|--------------|-------------------------------------|-----------------------------------------------------------|--|
|                       | ft (m)       | ft (m)                              | oz/ft (g/m)                                               |  |
| HMH72B24              | 164 (50)     | 98 (30)                             | 0.38 (11)                                                 |  |
| HMH72B36              | 246 (75)     | 98 (30)                             | 0.38 (11)                                                 |  |
| HMH72B48,<br>HMH72B60 | 246 (75)     | 98 (30)                             | 0.60 (17)                                                 |  |

The correction factor is based on the equivalent piping length in meters (EL) and the height difference between outdoor and indoor units in meters (H).

H: Height difference between indoor unit and outdoor unit (m).

- H>0: Position of outdoor unit is higher than position of indoor unit (m).
- H<0: Position of outdoor unit is lower than position of indoor unit (m).

L: Actual one-way piping length between indoor unit and outdoor unit (m).

EL: Equivalent one-way piping length between indoor unit and outdoor unit (m).

#### **Table 3: Correction factor**

| Gas diameter - mm (in.) | 90° elbow |
|-------------------------|-----------|
| 9.52 (3/8)              | 0.15      |
| 12.70 (1/2)             | 0.2       |
| 15.88 (5/8)             | 0.25      |
| 19.05 (3/4)             | 0.35      |
| 22.22 (7/8)             | 0.40      |

#### Table 4: Cooling capacity correction factor

| EL - ft (m) | HMH72B24 | HMH72B36 | HMH72B48 | HMH72B60 |
|-------------|----------|----------|----------|----------|
| 25 (7.6)    | 1.00     | 1.00     | 1.00     | 1.00     |
| 38 (10)     | 0.95     | 0.98     | 0.98     | 0.98     |
| 50 (15)     | 0.93     | 0.97     | 0.97     | 0.97     |
| 75 (23)     | 0.89     | 0.93     | 0.94     | 0.94     |
| 100 (30)    | 0.85     | 0.89     | 0.90     | 0.90     |
| 125 (38)    | 0.81     | 0.86     | 0.87     | 0.87     |
| 150 (45)    | 0.78     | 0.82     | 0.82     | 0.82     |
| 164 (50)    | 0.75     | 0.81     | 0.81     | 0.81     |
| 200 (61)    | -        | 0.75     | 0.74     | 0.74     |
| 246 (75)    | -        | 0.69     | 0.65     | 0.65     |

#### Table 5: Heating capacity correction factor

| EL - ft (m) | HMH72B24 | HMH72B36 | HMH72B48 | HMH72B60 |
|-------------|----------|----------|----------|----------|
| 25 (7.6)    | 1.00     | 1.00     | 1.00     | 1.00     |
| 38 (10)     | 0.94     | 0.98     | 0.98     | 0.98     |
| 50 (15)     | 0.93     | 0.97     | 0.97     | 0.97     |
| 75 (23)     | 0.89     | 0.93     | 0.94     | 0.94     |
| 100 (30)    | 0.85     | 0.89     | 0.90     | 0.90     |
| 125 (38)    | 0.81     | 0.86     | 0.86     | 0.86     |
| 150 (45)    | 0.78     | 0.83     | 0.83     | 0.83     |
| 164 (50)    | 0.75     | 0.81     | 0.80     | 0.80     |
| 200 (61)    | -        | 0.76     | 0.75     | 0.75     |
| 246 (75)    | -        | 0.70     | 0.66     | 0.66     |

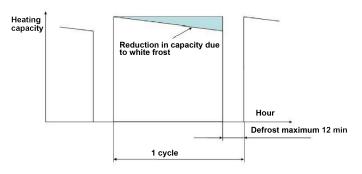
# Table 6: Height correction factor between indoor and outdoor units

| Height difference - ft (m) | Factor |
|----------------------------|--------|
| 16 (5)                     | 0.01   |
| 33 (10)                    | 0.02   |
| 108 (30)                   | 0.025  |

#### (i) Note:

- To ensure correct unit selection, consider the farthest indoor unit.
- The data in Table 6 assumes the height difference between indoor unit and outdoor unit is 0 m.
- Ensure to minimize the length of the connection pipes to optimize performance. If the outdoor unit is higher or lower than the indoor unit, apply the height correction factor in addition to the length correction factor to calculate cooling or heating. If the outdoor unit is higher, apply the correction factor to the cooling capacity. If the outdoor unit is lower, apply the correction factor to the heating capacity.

3


The heating capacity in Table 5 excludes defrost. In consideration of defrost, correct the heating capacity by the following equation:

corrected heating capacity = defrost correction factor x unit capacity

#### **Table 7: Defrosting operation correction factors**

| Outdoor temperature - °F (°C)<br>DB | Correction factor (humidity rating 85% RH) |
|-------------------------------------|--------------------------------------------|
| 5 (-15)                             | 0.95                                       |
| 14 (-10)                            | 0.95                                       |
| 23 (-5)                             | 0.93                                       |
| 32 (0)                              | 0.85                                       |
| 44.6 (7)                            | 1.0                                        |
| 50 (10)                             | 1.0                                        |
| 59 (15)                             | 1.0                                        |

#### **Figure 2: Correction factor**



O Note: The correction factor is not valid for special conditions such as snowfall or operation in a transitional period.

#### Liquid-line filter drier

This unit requires a bi-flow liquid line filter drier installed external to the unit. This is included in the wiring accessory kit HMH7AK001 required for installation.

| R-410A filter-drier<br>Source 1 Part Number | Apply with models |
|---------------------------------------------|-------------------|
| S1-404101                                   | All               |



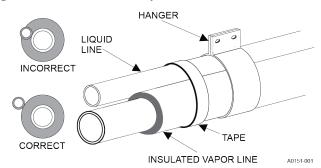
Using a larger than specified line size could result in oil return problems. Using too small a line results in loss of capacity and other problems caused by insufficient refrigerant flow. For the heat pump, maintain level horizontal refrigerant lines between the indoor unit and the outdoor unit to facilitate sufficient oil return.

#### Add-on replacement/retrofit

When using this unit as a replacement for an existing R-410A unit, these are matched systems. Replace

the indoor coil and the outdoor unit. Perform the following steps to ensure correct system operation and performance.

- 1. Change out the indoor coil to an approved R-410A coil/air handling unit combination with the appropriate metering device.
- 2. Change out the lineset when replacing an R-22 unit with an R410A unit to reduce cross-contamination of oils and refrigerants. If change-out of the lineset is not practical, take the following precautions:
  - a. Inspect the lineset for kinks, sharp bends, or other restrictions, and for corrosion.
  - b. Determine if there are any low spots that might be serving as oil traps.
  - c. Flush the lineset with a commercially available flush kit to remove as much of the existing oil and contaminants as possible.
- 3. If replacing the outdoor unit because of a compressor burnout, replace the refrigeration lines or, at a minimum, thoroughly flush the lines with a commercially available flush kit.




#### Precautions for line installation

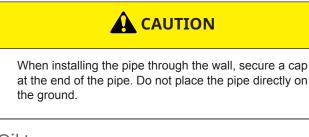
Adhere to the following during line installation:

- Connect the outdoor unit to the indoor coil using field supplied refrigerant grade (ACR) copper tubing that is internally clean and dry. Units must only be installed with the tubing sizes for approved system combinations as specified in the *Tabular Data Sheet*. The charge given is applicable for total tubing lengths up to 15 ft (4.6 m).
- Install the refrigerant lines with as few bends as possible. Ensure not to damage the couplings or kink the tubing. Use clean hard drawn copper tubing where no appreciable amount of bending around obstruction is necessary. If soft copper must be used, ensure to avoid sharp bends that may cause a restriction.
- Install the lines so that they do not obstruct service access to the coil, indoor section, or filter.
- Isolate the refrigerant lines to minimize noise transmission from the equipment to the structure.
- Insulate the vapor line with a minimum of 1/2-in. foam rubber insulation (Armaflex or equivalent). Insulate liquid lines that may be exposed to direct sunlight, high temperatures, or excessive humidity.
- Tape and suspend the refrigerant lines correctly. Do not allow tube metal-to-metal contact. See Figure 3.

#### Figure 3: Installation of vapor line



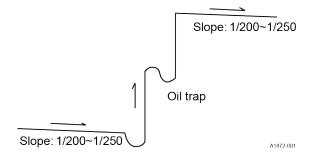
 Use PVC piping as a conduit for all underground installations as shown in Figure 4. Keep buried lines as short as possible to minimize the build up of liquid refrigerant in the vapor line during long periods of shutdown.


#### Figure 4: Underground installation



Pack fiberglass insulation and a sealing material such as permagum around refrigerant lines where they penetrate a wall to reduce vibration and retain some flexibility.

#### Additional refrigerant charge


The outdoor unit is precharged with enough R-410A refrigerant for the outdoor unit, the smallest indoor unit, and 15 ft of lineset. Additional refrigerant per foot of additional lineset is 0.38 oz for the 24k and 36k models, and 0.60 oz for the 48k and 60k models (see Table 2). Refer to the *Tabular Data Sheet* for more information on precharge amount and indoor combinations.



### Oil trap

When the indoor unit is lower than the outdoor unit and the height difference is larger than 16 ft, install an oil trap every 16 ft in the suction piping.

#### Figure 5: Oil trap



#### (i) Note:

- 1. To avoid storing too much oil in the oil trap and to ensure better cooling and heating performance, the oil trap must be as short and as straight as possible.
- 2. The horizontal piping must slope toward the trap or outdoor section at a slope of 1/8 in./ft for proper oil return.

5

# Service data

The following are the service data tables for HMH7 outdoor units.

# HMH72B241S cooling service data

# Table 8: HMH72B241S with nominal coil at 82°F setting

| Indoor DB / | Indoor            | Cooling service data                 |     |     |     |     |     |     |     |
|-------------|-------------------|--------------------------------------|-----|-----|-----|-----|-----|-----|-----|
| WB (°F)     | airflow<br>(SCFM) | Outdoor temperature (°F)             | 55  | 65  | 75  | 85  | 95  | 105 | 115 |
|             |                   | Liquid pressure (PSIG)               | 210 | 255 | 300 | 344 | 389 | 434 | 478 |
|             |                   | Liquid temperature (°F)              | 72  | 82  | 91  | 101 | 110 | 120 | 129 |
|             |                   | Suction pressure (PSIG)              | 117 | 119 | 121 | 124 | 126 | 128 | 131 |
|             | 600               | Suction temperature (°F)             | 52  | 54  | 56  | 57  | 59  | 61  | 63  |
|             | 000               | Suction superheat (°F)               | 12  | 12  | 13  | 14  | 15  | 16  | 17  |
|             |                   | Outdoor unit current (A)             | 5   | 6   | 7   | 8   | 9   | 10  | 11  |
|             |                   | Indoor coil temperature drop<br>(°F) | 27  | 26  | 25  | 24  | 24  | 23  | 22  |
|             |                   | Liquid pressure (PSIG)               | 212 | 257 | 301 | 346 | 391 | 435 | 480 |
|             |                   | Liquid temperature (°F)              | 73  | 82  | 92  | 101 | 111 | 120 | 130 |
|             | 800               | Suction pressure (PSIG)              | 122 | 124 | 127 | 129 | 131 | 133 | 135 |
| 75/62       |                   | Suction temperature (°F)             | 55  | 57  | 58  | 60  | 61  | 63  | 65  |
| 13/02       |                   | Suction superheat (°F)               | 12  | 13  | 14  | 15  | 15  | 16  | 17  |
|             |                   | Outdoor unit current (A)             | 5   | 6   | 7   | 8   | 9   | 10  | 11  |
|             |                   | Indoor coil temperature drop<br>(°F) | 24  | 23  | 22  | 22  | 21  | 20  | 20  |
|             |                   | Liquid pressure (PSIG)               | 214 | 258 | 303 | 348 | 392 | 437 | 481 |
|             |                   | Liquid temperature (°F)              | 74  | 83  | 92  | 102 | 111 | 121 | 130 |
|             |                   | Suction pressure (PSIG)              | 127 | 130 | 132 | 134 | 136 | 138 | 140 |
| 1           | 1000              | Suction temperature (°F)             | 58  | 59  | 61  | 62  | 64  | 65  | 67  |
|             | 1000              | Suction superheat (°F)               | 13  | 14  | 15  | 15  | 16  | 17  | 17  |
|             |                   | Outdoor unit current (A)             | 5   | 6   | 7   | 8   | 9   | 10  | 11  |
|             |                   | Indoor coil temperature drop<br>(°F) | 20  | 20  | 19  | 19  | 18  | 18  | 17  |

### Table 8: HMH72B241S with nominal coil at 82°F setting

| Indoor DB / | Indoor<br>airflow<br>(SCFM) | Cooling service data                 |     |     |     |     |     |     |     |
|-------------|-----------------------------|--------------------------------------|-----|-----|-----|-----|-----|-----|-----|
| WB (°F)     |                             | Outdoor temperature (°F)             | 55  | 65  | 75  | 85  | 95  | 105 | 115 |
|             |                             | Liquid pressure (PSIG)               | 204 | 248 | 292 | 336 | 380 | 424 | 469 |
|             |                             | Liquid temperature (°F)              | 70  | 80  | 90  | 100 | 110 | 120 | 130 |
|             |                             | Suction pressure (PSIG)              | 105 | 109 | 112 | 116 | 119 | 122 | 126 |
|             | 600                         | Suction temperature (°F)             | 47  | 50  | 53  | 56  | 59  | 62  | 65  |
|             | 000                         | Suction superheat (°F)               | 12  | 13  | 14  | 16  | 17  | 19  | 21  |
|             |                             | Outdoor unit current (A)             | 5   | 6   | 7   | 8   | 9   | 9   | 10  |
|             |                             | Indoor coil temperature drop<br>(°F) | 35  | 34  | 33  | 31  | 30  | 29  | 27  |
|             |                             | Liquid pressure (PSIG)               | 211 | 255 | 300 | 344 | 389 | 433 | 478 |
|             |                             | Liquid temperature (°F)              | 75  | 84  | 93  | 102 | 111 | 120 | 129 |
|             |                             | Suction pressure (PSIG)              | 115 | 118 | 122 | 125 | 129 | 132 | 136 |
| 0/57        | 800                         | Suction temperature (°F)             | 51  | 54  | 57  | 59  | 62  | 65  | 67  |
| 30/57       | 800                         | Suction superheat (°F)               | 12  | 13  | 14  | 16  | 17  | 18  | 19  |
|             |                             | Outdoor unit current (A)             | 5   | 6   | 7   | 8   | 9   | 10  | 11  |
|             |                             | Indoor coil temperature drop<br>(°F) | 31  | 29  | 28  | 27  | 25  | 24  | 23  |
|             |                             | Liquid pressure (PSIG)               | 218 | 263 | 308 | 353 | 397 | 442 | 487 |
|             | 1000                        | Liquid temperature (°F)              | 80  | 89  | 97  | 105 | 113 | 121 | 129 |
|             |                             | Suction pressure (PSIG)              | 124 | 128 | 131 | 135 | 138 | 142 | 146 |
|             |                             | Suction temperature (°F)             | 56  | 58  | 61  | 63  | 65  | 68  | 70  |
|             |                             | Suction superheat (°F)               | 13  | 13  | 14  | 15  | 16  | 17  | 19  |
|             |                             | Outdoor unit current (A)             | 5   | 6   | 7   | 8   | 9   | 10  | 11  |
|             |                             | Indoor coil temperature drop<br>(°F) | 26  | 24  | 23  | 22  | 21  | 20  | 19  |
|             | 600                         | Liquid pressure (PSIG)               | 211 | 254 | 297 | 340 | 383 | 427 | 470 |
|             |                             | Liquid temperature (°F)              | 72  | 82  | 91  | 101 | 111 | 120 | 130 |
|             |                             | Suction pressure (PSIG)              | 116 | 118 | 119 | 121 | 122 | 124 | 126 |
|             |                             | Suction temperature (°F)             | 51  | 53  | 55  | 57  | 58  | 60  | 62  |
|             |                             | Suction superheat (°F)               | 11  | 12  | 14  | 15  | 16  | 17  | 18  |
|             |                             | Outdoor unit current (A)             | 5   | 6   | 7   | 8   | 9   | 10  | 11  |
|             |                             | Indoor coil temperature drop<br>(°F) | 31  | 31  | 30  | 30  | 29  | 28  | 28  |
|             |                             | Liquid pressure (PSIG)               | 212 | 256 | 301 | 345 | 389 | 433 | 478 |
|             |                             | Liquid temperature (°F)              | 73  | 82  | 92  | 101 | 111 | 121 | 130 |
|             |                             | Suction pressure (PSIG)              | 122 | 124 | 126 | 129 | 131 | 133 | 135 |
|             |                             | Suction temperature (°F)             | 55  | 57  | 58  | 60  | 62  | 63  | 65  |
| 80/62       | 800                         | Suction superheat (°F)               | 13  | 13  | 14  | 15  | 16  | 17  | 17  |
|             |                             | Outdoor unit current (A)             | 5   | 6   | 7   | 8   | 9   | 10  | 11  |
|             |                             | Indoor coil temperature drop<br>(°F) | 28  | 27  | 26  | 26  | 25  | 24  | 24  |
|             |                             | Liquid pressure (PSIG)               | 213 | 259 | 304 | 349 | 395 | 440 | 485 |
|             |                             | Liquid temperature (°F)              | 73  | 83  | 92  | 102 | 111 | 121 | 130 |
|             |                             | Suction pressure (PSIG)              | 127 | 130 | 133 | 136 | 139 | 142 | 145 |
|             | 1000                        | Suction temperature (°F)             | 59  | 60  | 62  | 63  | 65  | 67  | 68  |
|             | 1000                        | Suction superheat (°F)               | 14  | 14  | 15  | 15  | 16  | 16  | 17  |
|             |                             | Outdoor unit current (A)             | 5   | 6   | 7   | 8   | 9   | 10  | 11  |
|             |                             | Indoor coil temperature drop<br>(°F) | 24  | 24  | 23  | 22  | 21  | 20  | 19  |

7

### Table 8: HMH72B241S with nominal coil at 82°F setting

| Indoor DB / | Indoor            | Cooling service data                 |     |     |     |     |     |     |     |
|-------------|-------------------|--------------------------------------|-----|-----|-----|-----|-----|-----|-----|
| WB (°F)     | airflow<br>(SCFM) | Outdoor temperature (°F)             | 55  | 65  | 75  | 85  | 95  | 105 | 115 |
|             |                   | Liquid pressure (PSIG)               | 214 | 258 | 303 | 348 | 393 | 438 | 483 |
|             |                   | Liquid temperature (°F)              | 73  | 83  | 93  | 102 | 112 | 121 | 131 |
|             |                   | Suction pressure (PSIG)              | 127 | 129 | 132 | 135 | 137 | 140 | 143 |
|             | 600               | Suction temperature (°F)             | 58  | 59  | 61  | 62  | 64  | 65  | 67  |
|             | 000               | Suction superheat (°F)               | 13  | 14  | 14  | 15  | 15  | 16  | 16  |
|             |                   | Outdoor unit current (A)             | 5   | 6   | 7   | 8   | 9   | 10  | 11  |
|             |                   | Indoor coil temperature drop<br>(°F) | 27  | 26  | 25  | 24  | 23  | 22  | 22  |
|             |                   | Liquid pressure (PSIG)               | 216 | 261 | 305 | 350 | 395 | 440 | 485 |
|             |                   | Liquid temperature (°F)              | 74  | 84  | 93  | 103 | 112 | 122 | 131 |
|             |                   | Suction pressure (PSIG)              | 132 | 135 | 137 | 140 | 143 | 145 | 148 |
| 0/67        | 000               | Suction temperature (°F)             | 61  | 63  | 64  | 65  | 66  | 68  | 69  |
| 30/67       | 800               | Suction superheat (°F)               | 15  | 15  | 15  | 16  | 16  | 16  | 17  |
|             |                   | Outdoor unit current (A)             | 5   | 6   | 7   | 8   | 9   | 10  | 11  |
|             |                   | Indoor coil temperature drop<br>(°F) | 23  | 22  | 22  | 21  | 21  | 20  | 19  |
|             |                   | Liquid pressure (PSIG)               | 218 | 263 | 308 | 353 | 397 | 442 | 487 |
|             | 1000              | Liquid temperature (°F)              | 75  | 84  | 94  | 103 | 113 | 122 | 132 |
|             |                   | Suction pressure (PSIG)              | 138 | 140 | 143 | 145 | 148 | 150 | 153 |
|             |                   | Suction temperature (°F)             | 65  | 66  | 67  | 68  | 69  | 70  | 71  |
|             |                   | Suction superheat (°F)               | 16  | 16  | 17  | 17  | 17  | 17  | 17  |
|             |                   | Outdoor unit current (A)             | 5   | 6   | 7   | 8   | 9   | 10  | 11  |
|             |                   | Indoor coil temperature drop<br>(°F) | 19  | 19  | 19  | 18  | 18  | 17  | 17  |
|             |                   | Liquid pressure (PSIG)               | 220 | 264 | 308 | 353 | 397 | 441 | 486 |
|             |                   | Liquid temperature (°F)              | 75  | 84  | 94  | 103 | 113 | 123 | 132 |
|             |                   | Suction pressure (PSIG)              | 139 | 142 | 145 | 148 | 151 | 154 | 157 |
|             |                   | Suction temperature (°F)             | 66  | 67  | 68  | 68  | 69  | 70  | 71  |
|             | 600               | Suction superheat (°F)               | 17  | 17  | 16  | 16  | 16  | 16  | 16  |
|             |                   | Outdoor unit current (A)             | 5   | 6   | 7   | 8   | 9   | 10  | 11  |
|             |                   | Indoor coil temperature drop<br>(°F) | 20  | 20  | 19  | 18  | 18  | 17  | 17  |
|             |                   | Liquid pressure (PSIG)               | 220 | 265 | 310 | 356 | 401 | 446 | 491 |
|             |                   | Liquid temperature (°F)              | 75  | 85  | 94  | 104 | 113 | 123 | 132 |
|             |                   | Suction pressure (PSIG)              | 141 | 145 | 149 | 152 | 156 | 159 | 163 |
|             |                   | Suction temperature (°F)             | 68  | 69  | 70  | 71  | 72  | 73  | 74  |
| 0/72        | 800               | Suction superheat (°F)               | 18  | 18  | 18  | 17  | 17  | 17  | 17  |
|             |                   | Outdoor unit current (A)             | 5   | 6   | 7   | 8   | 9   | 10  | 11  |
|             |                   | Indoor coil temperature drop<br>(°F) | 18  | 17  | 16  | 16  | 15  | 14  | 14  |
|             |                   | Liquid pressure (PSIG)               | 221 | 267 | 313 | 359 | 404 | 450 | 496 |
|             |                   | Liquid temperature (°F)              | 76  | 85  | 95  | 104 | 114 | 123 | 133 |
|             |                   | Suction pressure (PSIG)              | 144 | 148 | 152 | 156 | 160 | 165 | 169 |
|             |                   | Suction temperature (°F)             | 70  | 71  | 73  | 74  | 75  | 76  | 77  |
|             | 1000              | Suction superheat (°F)               | 19  | 19  | 19  | 19  | 18  | 18  | 18  |
|             |                   | Outdoor unit current (A)             | 5   | 6   | 7   | 8   | 9   | 10  | 11  |
|             |                   | Indoor coil temperature drop         |     |     |     |     |     |     |     |
|             |                   | (°F)                                 | 15  | 14  | 14  | 13  | 12  | 12  | 11  |

# HMH72B241S heating service data

#### Indoor Indoor Heating service data temperature airflow Outdoor temperature (°F) (SCFM) (°F) Liquid pressure (PSIG) Liquid temperature (°F) Outdoor unit current (A) Indoor coil temperature rise (°F) 37 Liquid pressure (PSIG) Liquid temperature (°F) Outdoor unit current (A) Indoor coil temperature rise (°F) 31 Liquid pressure (PSIG) Liquid temperature (°F) Outdoor unit current (A) Indoor coil temperature rise (°F) 25 Liquid pressure (PSIG) Liquid temperature (°F) Outdoor unit current (A) Indoor coil temperature rise (°F) 38 Liquid pressure (PSIG) Liquid temperature (°F) Outdoor unit current (A) Indoor coil temperature rise (°F) 31 Liquid pressure (PSIG) Liquid temperature (°F) Outdoor unit current (A) Indoor coil temperature rise (°F) 24 Liquid pressure (PSIG) Liquid temperature (°F) Outdoor unit current (A) Indoor coil temperature rise (°F) 36 Liquid pressure (PSIG) Liquid temperature (°F) Outdoor unit current (A) Indoor coil temperature rise (°F) 32 Liquid pressure (PSIG)

Liquid temperature (°F)

Outdoor unit current (A)

Indoor coil temperature rise (°F) 27

#### Table 9: HMH72B241S with nominal coil at 82°F setting

# HMH72B361S cooling service data

# Table 10: HMH72B361S with nominal coil at 82°F setting

| Indoor DB / | , Indoor<br>airflow<br>(SCFM) | Cooling service data                 |     |     |     |     |     |     |     |
|-------------|-------------------------------|--------------------------------------|-----|-----|-----|-----|-----|-----|-----|
| WB (°F)     |                               | Outdoor temperature (°F)             | 55  | 65  | 75  | 85  | 95  | 105 | 115 |
|             |                               | Liquid pressure (PSIG)               | 224 | 271 | 318 | 364 | 411 | 457 | 491 |
|             |                               | Liquid temperature (°F)              | 69  | 79  | 88  | 98  | 108 | 118 | 126 |
|             |                               | Suction pressure (PSIG)              | 107 | 109 | 112 | 114 | 116 | 118 | 134 |
|             | 900                           | Suction temperature (°F)             | 51  | 53  | 55  | 56  | 58  | 59  | 67  |
|             |                               | Suction superheat (°F)               | 15  | 16  | 17  | 17  | 18  | 19  | 20  |
|             |                               | Outdoor unit current (A)             | 9   | 11  | 12  | 13  | 15  | 16  | 12  |
|             |                               | Indoor coil temperature drop<br>(°F) | 28  | 27  | 26  | 26  | 25  | 24  | 20  |
|             |                               | Liquid pressure (PSIG)               | 227 | 274 | 321 | 367 | 414 | 461 | 493 |
|             |                               | Liquid temperature (°F)              | 70  | 80  | 90  | 100 | 109 | 119 | 127 |
|             |                               | Suction pressure (PSIG)              | 114 | 116 | 117 | 119 | 121 | 123 | 139 |
| 75/62       | 1200                          | Suction temperature (°F)             | 54  | 55  | 57  | 58  | 60  | 61  | 68  |
| 5702        | 1200                          | Suction superheat (°F)               | 15  | 16  | 16  | 17  | 17  | 18  | 19  |
|             |                               | Outdoor unit current (A)             | 9   | 11  | 12  | 14  | 15  | 16  | 13  |
|             |                               | Indoor coil temperature drop<br>(°F) | 25  | 24  | 23  | 23  | 22  | 21  | 18  |
|             |                               | Liquid pressure (PSIG)               | 230 | 277 | 324 | 371 | 417 | 464 | 494 |
|             | 1500                          | Liquid temperature (°F)              | 72  | 81  | 91  | 101 | 111 | 120 | 127 |
|             |                               | Suction pressure (PSIG)              | 120 | 122 | 123 | 125 | 127 | 129 | 144 |
|             |                               | Suction temperature (°F)             | 57  | 58  | 59  | 60  | 61  | 63  | 69  |
|             | 1500                          | Suction superheat (°F)               | 15  | 16  | 16  | 16  | 17  | 17  | 18  |
|             |                               | Outdoor unit current (A)             | 9   | 11  | 12  | 14  | 15  | 17  | 13  |
|             |                               | Indoor coil temperature drop<br>(°F) | 22  | 21  | 21  | 20  | 19  | 19  | 16  |
|             | 000                           | Liquid pressure (PSIG)               | 213 | 260 | 307 | 354 | 401 | 449 | 482 |
|             |                               | Liquid temperature (°F)              | 66  | 76  | 87  | 97  | 107 | 117 | 122 |
|             |                               | Suction pressure (PSIG)              | 104 | 105 | 106 | 107 | 108 | 109 | 138 |
|             |                               | Suction temperature (°F)             | 50  | 51  | 52  | 53  | 54  | 55  | 64  |
|             | 900                           | Suction superheat (°F)               | 16  | 16  | 17  | 17  | 18  | 18  | 15  |
|             |                               | Outdoor unit current (A)             | 8   | 9   | 11  | 13  | 14  | 16  | 12  |
|             |                               | Indoor coil temperature drop<br>(°F) | 34  | 34  | 33  | 33  | 32  | 31  | 24  |
|             |                               | Liquid pressure (PSIG)               | 223 | 271 | 318 | 365 | 412 | 459 | 486 |
|             |                               | Liquid temperature (°F)              | 69  | 79  | 89  | 99  | 109 | 119 | 126 |
|             |                               | Suction pressure (PSIG)              | 110 | 112 | 114 | 116 | 118 | 120 | 149 |
| 30/57       | 1200                          | Suction temperature (°F)             | 52  | 53  | 54  | 56  | 57  | 58  | 67  |
| 50/57       | 1200                          | Suction superheat (°F)               | 14  | 15  | 15  | 16  | 16  | 16  | 14  |
|             |                               | Outdoor unit current (A)             | 8   | 10  | 12  | 13  | 15  | 16  | 12  |
|             |                               | Indoor coil temperature drop<br>(°F) | 30  | 29  | 29  | 28  | 27  | 27  | 20  |
|             |                               | Liquid pressure (PSIG)               | 233 | 281 | 328 | 376 | 423 | 470 | 490 |
|             |                               | Liquid temperature (°F)              | 72  | 82  | 92  | 102 | 112 | 122 | 129 |
|             |                               | Suction pressure (PSIG)              | 117 | 120 | 123 | 125 | 128 | 131 | 159 |
|             | 1500                          | Suction temperature (°F)             | 54  | 55  | 57  | 58  | 60  | 61  | 69  |
|             | 1500                          | Suction superheat (°F)               | 13  | 14  | 14  | 14  | 15  | 15  | 13  |
|             |                               | Outdoor unit current (A)             | 9   | 11  | 12  | 14  | 15  | 17  | 12  |
|             |                               | Indoor coil temperature drop<br>(°F) | 26  | 25  | 24  | 23  | 22  | 22  | 16  |

### Table 10: HMH72B361S with nominal coil at 82°F setting

| Indoor DB / | Indoor            | Cooling service data                 |     |     |     |     |     |     |     |  |
|-------------|-------------------|--------------------------------------|-----|-----|-----|-----|-----|-----|-----|--|
| WB (°F)     | airflow<br>(SCFM) | Outdoor temperature (°F)             | 55  | 65  | 75  | 85  | 95  | 105 | 115 |  |
|             |                   | Liquid pressure (PSIG)               | 223 | 269 | 315 | 362 | 408 | 454 | 503 |  |
|             |                   | Liquid temperature (°F)              | 68  | 78  | 88  | 98  | 108 | 118 | 127 |  |
|             |                   | Suction pressure (PSIG)              | 106 | 109 | 111 | 113 | 116 | 118 | 130 |  |
|             | 900               | Suction temperature (°F)             | 55  | 56  | 56  | 57  | 57  | 58  | 64  |  |
|             | 500               | Suction superheat (°F)               | 19  | 19  | 18  | 18  | 18  | 17  | 18  |  |
|             |                   | Outdoor unit current (A)             | 9   | 11  | 12  | 13  | 15  | 16  | 14  |  |
|             |                   | Indoor coil temperature drop<br>(°F) | 32  | 31  | 30  | 30  | 29  | 28  | 25  |  |
|             |                   | Liquid pressure (PSIG)               | 225 | 272 | 318 | 365 | 411 | 458 | 502 |  |
|             |                   | Liquid temperature (°F)              | 70  | 80  | 90  | 100 | 110 | 119 | 129 |  |
|             |                   | Suction pressure (PSIG)              | 113 | 115 | 118 | 120 | 122 | 124 | 141 |  |
| 30/62       | 1200              | Suction temperature (°F)             | 58  | 58  | 59  | 59  | 59  | 60  | 67  |  |
| 50/02       | 1200              | Suction superheat (°F)               | 19  | 18  | 18  | 17  | 17  | 16  | 17  |  |
|             |                   | Outdoor unit current (A)             | 9   | 11  | 12  | 13  | 15  | 16  | 14  |  |
|             |                   | Indoor coil temperature drop<br>(°F) | 29  | 28  | 27  | 26  | 26  | 25  | 22  |  |
|             |                   | Liquid pressure (PSIG)               | 227 | 274 | 321 | 368 | 415 | 462 | 501 |  |
|             |                   | Liquid temperature (°F)              | 72  | 82  | 91  | 101 | 111 | 121 | 130 |  |
|             | 1500              | Suction pressure (PSIG)              | 120 | 122 | 124 | 126 | 129 | 131 | 151 |  |
|             |                   | Suction temperature (°F)             | 60  | 60  | 61  | 61  | 61  | 62  | 70  |  |
|             | 1500              | Suction superheat (°F)               | 19  | 18  | 17  | 17  | 16  | 16  | 17  |  |
|             |                   | Outdoor unit current (A)             | 9   | 11  | 12  | 14  | 15  | 17  | 14  |  |
|             |                   | Indoor coil temperature drop<br>(°F) | 25  | 25  | 24  | 23  | 23  | 22  | 18  |  |
|             |                   | Liquid pressure (PSIG)               | 227 | 275 | 323 | 370 | 418 | 465 | 492 |  |
|             | 900               | Liquid temperature (°F)              | 71  | 81  | 91  | 101 | 111 | 120 | 127 |  |
|             |                   | Suction pressure (PSIG)              | 118 | 120 | 123 | 125 | 127 | 129 | 148 |  |
|             |                   | Suction temperature (°F)             | 59  | 59  | 60  | 60  | 60  | 61  | 69  |  |
|             |                   | Suction superheat (°F)               | 18  | 17  | 17  | 16  | 16  | 15  | 17  |  |
|             |                   | Outdoor unit current (A)             | 9   | 11  | 12  | 14  | 15  | 17  | 12  |  |
|             |                   | Indoor coil temperature drop<br>(°F) | 28  | 27  | 26  | 26  | 25  | 24  | 20  |  |
|             |                   | Liquid pressure (PSIG)               | 230 | 278 | 325 | 373 | 420 | 468 | 494 |  |
|             |                   | Liquid temperature (°F)              | 73  | 82  | 92  | 102 | 112 | 122 | 128 |  |
|             |                   | Suction pressure (PSIG)              | 124 | 126 | 129 | 131 | 133 | 135 | 154 |  |
| 30/67       | 1200              | Suction temperature (°F)             | 62  | 62  | 62  | 62  | 62  | 62  | 71  |  |
| 50/07       | 1200              | Suction superheat (°F)               | 19  | 18  | 17  | 16  | 15  | 15  | 16  |  |
|             |                   | Outdoor unit current (A)             | 9   | 11  | 12  | 14  | 15  | 17  | 12  |  |
|             |                   | Indoor coil temperature drop<br>(°F) | 25  | 24  | 23  | 23  | 22  | 21  | 18  |  |
|             |                   | Liquid pressure (PSIG)               | 233 | 281 | 328 | 376 | 423 | 470 | 495 |  |
|             |                   | Liquid temperature (°F)              | 74  | 84  | 93  | 103 | 113 | 123 | 129 |  |
|             |                   | Suction pressure (PSIG)              | 130 | 133 | 135 | 137 | 139 | 141 | 159 |  |
|             | 1500              | Suction temperature (°F)             | 65  | 65  | 65  | 64  | 64  | 64  | 72  |  |
|             | 1500              | Suction superheat (°F)               | 19  | 18  | 17  | 16  | 15  | 14  | 16  |  |
|             |                   | Outdoor unit current (A)             | 10  | 11  | 12  | 14  | 15  | 17  | 12  |  |
|             |                   | Indoor coil temperature drop<br>(°F) | 22  | 21  | 20  | 20  | 19  | 19  | 16  |  |

| Indoor DB / | Indoor            | Cooling service data                 |     |     |     |     |     |     |     |
|-------------|-------------------|--------------------------------------|-----|-----|-----|-----|-----|-----|-----|
| WB (°F)     | airflow<br>(SCFM) | Outdoor temperature (°F)             | 55  | 65  | 75  | 85  | 95  | 105 | 115 |
|             |                   | Liquid pressure (PSIG)               | 234 | 281 | 329 | 376 | 423 | 471 | 503 |
|             |                   | Liquid temperature (°F)              | 74  | 84  | 93  | 103 | 113 | 123 | 130 |
|             |                   | Suction pressure (PSIG)              | 131 | 133 | 136 | 138 | 141 | 143 | 160 |
|             | 900               | Suction temperature (°F)             | 64  | 64  | 64  | 64  | 64  | 64  | 71  |
|             | 900               | Suction superheat (°F)               | 18  | 17  | 16  | 15  | 14  | 13  | 15  |
|             |                   | Outdoor unit current (A)             | 9   | 11  | 12  | 14  | 15  | 17  | 13  |
|             |                   | Indoor coil temperature drop<br>(°F) | 23  | 22  | 21  | 21  | 20  | 19  | 16  |
|             |                   | Liquid pressure (PSIG)               | 237 | 284 | 331 | 379 | 426 | 473 | 503 |
|             |                   | Liquid temperature (°F)              | 75  | 85  | 95  | 104 | 114 | 124 | 131 |
|             |                   | Suction pressure (PSIG)              | 137 | 139 | 141 | 144 | 146 | 148 | 165 |
| 80/72       | 1200              | Suction temperature (°F)             | 67  | 67  | 67  | 67  | 66  | 66  | 73  |
| 00/72       |                   | Suction superheat (°F)               | 19  | 18  | 17  | 16  | 15  | 14  | 15  |
|             |                   | Outdoor unit current (A)             | 10  | 11  | 13  | 14  | 16  | 17  | 13  |
|             |                   | Indoor coil temperature drop<br>(°F) | 20  | 19  | 19  | 18  | 17  | 17  | 14  |
|             |                   | Liquid pressure (PSIG)               | 240 | 287 | 334 | 381 | 429 | 476 | 503 |
|             |                   | Liquid temperature (°F)              | 76  | 86  | 96  | 105 | 115 | 125 | 131 |
|             |                   | Suction pressure (PSIG)              | 142 | 145 | 147 | 149 | 151 | 154 | 170 |
|             | 1500              | Suction temperature (°F)             | 70  | 70  | 69  | 69  | 69  | 68  | 75  |
|             | 1500              | Suction superheat (°F)               | 20  | 19  | 18  | 16  | 15  | 14  | 15  |
|             |                   | Outdoor unit current (A)             | 10  | 11  | 13  | 14  | 16  | 17  | 13  |
|             |                   | Indoor coil temperature drop<br>(°F) | 17  | 16  | 16  | 15  | 15  | 14  | 12  |

(i) **Note:** Drive output is limited in the shaded area. Performance may vary and interpolation is not permissable.

# HMH72B361S heating service data

### Table 11: HMH72B361S with nominal coil at 82°F setting

| Indoor              | Indoor            | Heating service data              |     |     |     |     |     |     |  |  |  |  |
|---------------------|-------------------|-----------------------------------|-----|-----|-----|-----|-----|-----|--|--|--|--|
| temperature<br>(°F) | airflow<br>(SCFM) | Outdoor temperature (°F)          | 60  | 47  | 40  | 30  | 17  | 10  |  |  |  |  |
|                     |                   | Liquid pressure (PSIG)            | 357 | 332 | 318 | 299 | 274 | 260 |  |  |  |  |
|                     | 900               | Liquid temperature (°F)           | 107 | 101 | 98  | 93  | 87  | 84  |  |  |  |  |
|                     | 900               | Outdoor unit current (A)          | 14  | 13  | 12  | 12  | 11  | 10  |  |  |  |  |
|                     |                   | Indoor coil temperature rise (°F) | 41  | 36  | 33  | 29  | 24  | 21  |  |  |  |  |
|                     |                   | Liquid pressure (PSIG)            | 326 | 305 | 294 | 279 | 259 | 248 |  |  |  |  |
| 60                  | 1200              | Liquid temperature (°F)           | 100 | 95  | 93  | 89  | 84  | 81  |  |  |  |  |
| 60                  | 1200              | Outdoor unit current (A)          | 13  | 12  | 12  | 11  | 10  | 10  |  |  |  |  |
|                     |                   | Indoor coil temperature rise (°F) | 34  | 30  | 28  | 24  | 20  | 18  |  |  |  |  |
|                     |                   | Liquid pressure (PSIG)            | 294 | 278 | 270 | 258 | 243 | 235 |  |  |  |  |
|                     | 1500              | Liquid temperature (°F)           | 93  | 89  | 87  | 84  | 80  | 78  |  |  |  |  |
|                     | 1500              | Outdoor unit current (A)          | 12  | 11  | 11  | 10  | 10  | 10  |  |  |  |  |
|                     |                   | Indoor coil temperature rise (°F) | 27  | 23  | 22  | 19  | 16  | 14  |  |  |  |  |

| Table 11: HMH72B361S with | nominal coil at 82°F setting |
|---------------------------|------------------------------|
|---------------------------|------------------------------|

| Indoor              | Indoor            | Heating service data              |     |     |     |     |     |     |  |  |  |
|---------------------|-------------------|-----------------------------------|-----|-----|-----|-----|-----|-----|--|--|--|
| temperature<br>(°F) | airflow<br>(SCFM) | Outdoor temperature (°F)          | 60  | 47  | 40  | 30  | 17  | 10  |  |  |  |
|                     |                   | Liquid pressure (PSIG)            | 427 | 395 | 377 | 352 | 320 | 302 |  |  |  |
|                     | 900               | Liquid temperature (°F)           | 96  | 90  | 88  | 84  | 78  | 76  |  |  |  |
|                     | 500               | Outdoor unit current (A)          | 10  | 10  | 10  | 9   | 8   | 8   |  |  |  |
|                     |                   | Indoor coil temperature rise (°F) | 38  | 33  | 30  | 26  | 20  | 17  |  |  |  |
|                     |                   | Liquid pressure (PSIG)            | 394 | 366 | 351 | 330 | 302 | 287 |  |  |  |
| 70                  | 1200              | Liquid temperature (°F)           | 90  | 86  | 84  | 81  | 77  | 74  |  |  |  |
| 70                  | 1200              | Outdoor unit current (A)          | 10  | 9   | 9   | 9   | 8   | 8   |  |  |  |
|                     |                   | Indoor coil temperature rise (°F) | 31  | 27  | 24  | 21  | 16  | 14  |  |  |  |
|                     |                   | Liquid pressure (PSIG)            | 360 | 337 | 325 | 307 | 285 | 272 |  |  |  |
|                     | 1500              | Liquid temperature (°F)           | 85  | 82  | 80  | 78  | 75  | 73  |  |  |  |
|                     |                   | Outdoor unit current (A)          | 9   | 9   | 8   | 8   | 8   | 8   |  |  |  |
|                     |                   | Indoor coil temperature rise (°F) | 24  | 21  | 19  | 16  | 13  | 11  |  |  |  |
|                     | 900               | Liquid pressure (PSIG)            | 442 | 414 | 400 | 379 | 351 | 337 |  |  |  |
|                     |                   | Liquid temperature (°F)           | 123 | 117 | 115 | 111 | 105 | 103 |  |  |  |
|                     |                   | Outdoor unit current (A)          | 16  | 15  | 14  | 14  | 12  | 12  |  |  |  |
|                     |                   | Indoor coil temperature rise (°F) | 39  | 34  | 31  | 27  | 22  | 19  |  |  |  |
|                     |                   | Liquid pressure (PSIG)            | 410 | 386 | 374 | 357 | 334 | 322 |  |  |  |
| 80                  | 1200              | Liquid temperature (°F)           | 117 | 112 | 110 | 107 | 102 | 100 |  |  |  |
| 80                  | 1200              | Outdoor unit current (A)          | 15  | 14  | 14  | 13  | 12  | 11  |  |  |  |
|                     |                   | Indoor coil temperature rise (°F) | 32  | 28  | 26  | 22  | 18  | 16  |  |  |  |
|                     | 1500              | Liquid pressure (PSIG)            | 377 | 358 | 348 | 334 | 316 | 306 |  |  |  |
|                     |                   | Liquid temperature (°F)           | 111 | 107 | 105 | 102 | 98  | 96  |  |  |  |
|                     | 1500              | Outdoor unit current (A)          | 14  | 13  | 13  | 12  | 12  | 11  |  |  |  |
|                     |                   | Indoor coil temperature rise (°F) | 25  | 22  | 20  | 17  | 14  | 12  |  |  |  |

# HMH72B481S cooling service data

# Table 12: HMH72B481S with nominal coil at 82°F setting

| Indoor DB / | Indoor            | Cooling service data                 |     |     |     |     |     |     |     |  |
|-------------|-------------------|--------------------------------------|-----|-----|-----|-----|-----|-----|-----|--|
| WB (°F)     | airflow<br>(SCFM) | Outdoor temperature (°F)             | 55  | 65  | 75  | 85  | 95  | 105 | 115 |  |
|             |                   | Liquid pressure (PSIG)               | 202 | 247 | 293 | 338 | 384 | 430 | 484 |  |
|             |                   | Liquid temperature (°F)              | 65  | 75  | 85  | 94  | 104 | 114 | 121 |  |
|             |                   | Suction pressure (PSIG)              | 107 | 110 | 113 | 115 | 118 | 120 | 124 |  |
|             | 1200              | Suction temperature (°F)             | 49  | 51  | 53  | 55  | 58  | 60  | 63  |  |
|             |                   | Suction superheat (°F)               | 13  | 14  | 15  | 16  | 17  | 18  | 20  |  |
|             |                   | Outdoor unit current (A)             | 11  | 13  | 14  | 16  | 18  | 20  | 22  |  |
|             |                   | Indoor coil temperature drop<br>(°F) | 29  | 28  | 27  | 26  | 25  | 24  | 24  |  |
|             |                   | Liquid pressure (PSIG)               | 203 | 248 | 294 | 340 | 386 | 432 | 485 |  |
|             |                   | Liquid temperature (°F)              | 67  | 76  | 86  | 95  | 105 | 115 | 123 |  |
|             |                   | Suction pressure (PSIG)              | 112 | 115 | 118 | 121 | 124 | 126 | 128 |  |
| 75/62       | 1500              | Suction temperature (°F)             | 51  | 54  | 56  | 58  | 60  | 62  | 65  |  |
| / 5/ 62     | 1500              | Suction superheat (°F)               | 13  | 14  | 15  | 16  | 17  | 18  | 20  |  |
|             |                   | Outdoor unit current (A)             | 11  | 13  | 15  | 16  | 18  | 20  | 22  |  |
|             |                   | Indoor coil temperature drop<br>(°F) | 26  | 25  | 24  | 24  | 23  | 22  | 22  |  |
|             |                   | Liquid pressure (PSIG)               | 204 | 250 | 296 | 341 | 387 | 433 | 486 |  |
|             |                   | Liquid temperature (°F)              | 68  | 77  | 87  | 96  | 106 | 116 | 125 |  |
|             | 1800              | Suction pressure (PSIG)              | 117 | 120 | 123 | 126 | 129 | 132 | 131 |  |
|             |                   | Suction temperature (°F)             | 54  | 56  | 58  | 60  | 62  | 64  | 67  |  |
|             | 1800              | Suction superheat (°F)               | 14  | 15  | 15  | 16  | 17  | 17  | 21  |  |
|             |                   | Outdoor unit current (A)             | 11  | 13  | 15  | 17  | 18  | 20  | 22  |  |
|             |                   | Indoor coil temperature drop<br>(°F) | 23  | 23  | 22  | 21  | 21  | 20  | 20  |  |
|             |                   | Liquid pressure (PSIG)               | 199 | 245 | 290 | 336 | 381 | 427 | 484 |  |
|             |                   | Liquid temperature (°F)              | 63  | 73  | 83  | 94  | 104 | 114 | 124 |  |
|             | 1200              | Suction pressure (PSIG)              | 99  | 102 | 106 | 109 | 112 | 116 | 120 |  |
|             |                   | Suction temperature (°F)             | 45  | 48  | 50  | 53  | 55  | 58  | 61  |  |
|             |                   | Suction superheat (°F)               | 13  | 14  | 15  | 16  | 17  | 18  | 21  |  |
|             |                   | Outdoor unit current (A)             | 11  | 13  | 15  | 16  | 18  | 20  | 22  |  |
|             |                   | Indoor coil temperature drop<br>(°F) | 37  | 36  | 35  | 33  | 32  | 30  | 29  |  |
|             |                   | Liquid pressure (PSIG)               | 203 | 249 | 295 | 340 | 386 | 431 | 484 |  |
|             |                   | Liquid temperature (°F)              | 66  | 76  | 86  | 95  | 105 | 115 | 126 |  |
|             |                   | Suction pressure (PSIG)              | 109 | 111 | 114 | 117 | 119 | 122 | 130 |  |
| 00/57       | 1500              | Suction temperature (°F)             | 49  | 51  | 54  | 56  | 59  | 61  | 64  |  |
| 80/57       | 1500              | Suction superheat (°F)               | 12  | 14  | 15  | 16  | 17  | 19  | 19  |  |
|             |                   | Outdoor unit current (A)             | 11  | 13  | 15  | 16  | 18  | 20  | 22  |  |
|             |                   | Indoor coil temperature drop<br>(°F) | 33  | 32  | 31  | 30  | 28  | 27  | 26  |  |
|             |                   | Liquid pressure (PSIG)               | 208 | 253 | 299 | 345 | 390 | 436 | 484 |  |
|             |                   | Liquid temperature (°F)              | 68  | 78  | 88  | 97  | 107 | 117 | 127 |  |
|             |                   | Suction pressure (PSIG)              | 118 | 120 | 122 | 125 | 127 | 129 | 139 |  |
|             | 1000              | Suction temperature (°F)             | 53  | 55  | 58  | 60  | 62  | 65  | 67  |  |
|             | 1800              | Suction superheat (°F)               | 12  | 13  | 15  | 16  | 18  | 19  | 18  |  |
|             |                   | Outdoor unit current (A)             | 11  | 13  | 15  | 17  | 18  | 20  | 22  |  |
|             |                   | Indoor coil temperature drop<br>(°F) | 30  | 28  | 27  | 26  | 25  | 23  | 22  |  |

### Table 12: HMH72B481S with nominal coil at 82°F setting

| Indoor DB / | Indoor            | Cooling service data                 |     |     |     |     |     |     |     |  |
|-------------|-------------------|--------------------------------------|-----|-----|-----|-----|-----|-----|-----|--|
| WB (°F)     | airflow<br>(SCFM) | Outdoor temperature (°F)             | 55  | 65  | 75  | 85  | 95  | 105 | 115 |  |
|             |                   | Liquid pressure (PSIG)               | 202 | 248 | 293 | 339 | 384 | 429 | 481 |  |
|             |                   | Liquid temperature (°F)              | 65  | 75  | 85  | 95  | 104 | 114 | 119 |  |
|             |                   | Suction pressure (PSIG)              | 105 | 108 | 111 | 114 | 117 | 120 | 129 |  |
|             | 1200              | Suction temperature (°F)             | 50  | 52  | 54  | 56  | 58  | 60  | 56  |  |
|             | 1200              | Suction superheat (°F)               | 14  | 15  | 16  | 16  | 17  | 18  | 10  |  |
|             |                   | Outdoor unit current (A)             | 11  | 13  | 15  | 16  | 18  | 20  | 12  |  |
|             |                   | Indoor coil temperature drop<br>(°F) | 34  | 33  | 32  | 31  | 30  | 29  | 25  |  |
|             |                   | Liquid pressure (PSIG)               | 203 | 249 | 294 | 340 | 385 | 431 | 482 |  |
|             |                   | Liquid temperature (°F)              | 66  | 76  | 86  | 96  | 106 | 115 | 120 |  |
|             |                   | Suction pressure (PSIG)              | 111 | 114 | 117 | 120 | 123 | 125 | 136 |  |
| 30/62       | 1500              | Suction temperature (°F)             | 52  | 54  | 56  | 58  | 60  | 62  | 58  |  |
| 50/02       | 1500              | Suction superheat (°F)               | 14  | 15  | 16  | 17  | 17  | 18  | 10  |  |
|             |                   | Outdoor unit current (A)             | 11  | 13  | 15  | 16  | 18  | 20  | 12  |  |
|             |                   | Indoor coil temperature drop<br>(°F) | 29  | 28  | 27  | 26  | 25  | 24  | 22  |  |
|             |                   | Liquid pressure (PSIG)               | 204 | 250 | 296 | 341 | 387 | 432 | 483 |  |
|             |                   | Liquid temperature (°F)              | 68  | 78  | 87  | 97  | 107 | 116 | 120 |  |
|             | 1800              | Suction pressure (PSIG)              | 117 | 119 | 122 | 125 | 128 | 131 | 143 |  |
|             |                   | Suction temperature (°F)             | 55  | 57  | 59  | 61  | 63  | 64  | 61  |  |
|             | 1800              | Suction superheat (°F)               | 15  | 15  | 16  | 17  | 18  | 18  | 11  |  |
|             |                   | Outdoor unit current (A)             | 11  | 13  | 15  | 17  | 18  | 20  | 12  |  |
|             |                   | Indoor coil temperature drop<br>(°F) | 23  | 22  | 22  | 21  | 20  | 19  | 20  |  |
|             |                   | Liquid pressure (PSIG)               | 204 | 250 | 296 | 342 | 387 | 433 | 482 |  |
|             | 1200              | Liquid temperature (°F)              | 67  | 77  | 87  | 97  | 106 | 116 | 125 |  |
|             |                   | Suction pressure (PSIG)              | 117 | 120 | 123 | 127 | 130 | 133 | 124 |  |
|             |                   | Suction temperature (°F)             | 55  | 57  | 59  | 60  | 62  | 64  | 60  |  |
|             |                   | Suction superheat (°F)               | 14  | 15  | 15  | 16  | 17  | 17  | 17  |  |
|             |                   | Outdoor unit current (A)             | 11  | 13  | 15  | 17  | 18  | 20  | 22  |  |
|             |                   | Indoor coil temperature drop<br>(°F) | 29  | 28  | 27  | 26  | 25  | 23  | 28  |  |
|             |                   | Liquid pressure (PSIG)               | 206 | 252 | 297 | 343 | 389 | 435 | 484 |  |
|             |                   | Liquid temperature (°F)              | 68  | 78  | 88  | 98  | 107 | 117 | 126 |  |
|             |                   | Suction pressure (PSIG)              | 122 | 125 | 128 | 131 | 134 | 137 | 130 |  |
| 30/67       | 1500              | Suction temperature (°F)             | 58  | 60  | 61  | 63  | 64  | 66  | 64  |  |
| 30/67       | 1500              | Suction superheat (°F)               | 15  | 16  | 16  | 17  | 17  | 18  | 18  |  |
|             |                   | Outdoor unit current (A)             | 11  | 13  | 15  | 17  | 18  | 20  | 22  |  |
|             |                   | Indoor coil temperature drop<br>(°F) | 26  | 25  | 24  | 23  | 22  | 21  | 25  |  |
|             |                   | Liquid pressure (PSIG)               | 208 | 253 | 299 | 345 | 390 | 436 | 485 |  |
|             |                   | Liquid temperature (°F)              | 69  | 79  | 89  | 99  | 108 | 118 | 127 |  |
|             |                   | Suction pressure (PSIG)              | 128 | 130 | 133 | 136 | 139 | 142 | 136 |  |
|             | 1000              | Suction temperature (°F)             | 61  | 63  | 64  | 65  | 67  | 68  | 67  |  |
|             | 1800              | Suction superheat (°F)               | 17  | 17  | 17  | 17  | 18  | 18  | 19  |  |
|             |                   | Outdoor unit current (A)             | 11  | 13  | 15  | 17  | 19  | 21  | 22  |  |
|             |                   | Indoor coil temperature drop<br>(°F) | 23  | 22  | 22  | 21  | 20  | 19  | 22  |  |

| Indoor DB / | Indoor            | Cooling service data                 |     |     |     |     |     |     |     |  |
|-------------|-------------------|--------------------------------------|-----|-----|-----|-----|-----|-----|-----|--|
| WB (°F)     | airflow<br>(SCFM) | Outdoor temperature (°F)             | 55  | 65  | 75  | 85  | 95  | 105 | 115 |  |
|             |                   | Liquid pressure (PSIG)               | 245 | 283 | 321 | 360 | 398 | 437 | 486 |  |
|             |                   | Liquid temperature (°F)              | 79  | 87  | 95  | 103 | 111 | 118 | 126 |  |
|             |                   | Suction pressure (PSIG)              | 136 | 138 | 140 | 142 | 144 | 145 | 138 |  |
|             | 1200              | Suction temperature (°F)             | 60  | 62  | 63  | 65  | 67  | 68  | 67  |  |
|             | 1200              | Suction superheat (°F)               | 12  | 13  | 14  | 15  | 16  | 17  | 18  |  |
|             |                   | Outdoor unit current (A)             | 12  | 14  | 15  | 17  | 19  | 21  | 21  |  |
|             |                   | Indoor coil temperature drop<br>(°F) | 22  | 21  | 21  | 20  | 19  | 19  | 16  |  |
|             |                   | Liquid pressure (PSIG)               | 244 | 283 | 322 | 361 | 400 | 439 | 488 |  |
|             |                   | Liquid temperature (°F)              | 79  | 87  | 95  | 103 | 111 | 119 | 128 |  |
|             |                   | Suction pressure (PSIG)              | 140 | 142 | 144 | 146 | 148 | 150 | 151 |  |
| 80/72       | 1500              | Suction temperature (°F)             | 63  | 65  | 66  | 67  | 69  | 70  | 72  |  |
| 00/72       |                   | Suction superheat (°F)               | 14  | 14  | 15  | 16  | 16  | 17  | 18  |  |
|             |                   | Outdoor unit current (A)             | 12  | 14  | 15  | 17  | 19  | 21  | 21  |  |
|             |                   | Indoor coil temperature drop<br>(°F) | 20  | 19  | 19  | 18  | 17  | 17  | 15  |  |
|             |                   | Liquid pressure (PSIG)               | 244 | 283 | 323 | 362 | 401 | 441 | 490 |  |
|             |                   | Liquid temperature (°F)              | 79  | 87  | 95  | 104 | 112 | 120 | 129 |  |
|             |                   | Suction pressure (PSIG)              | 144 | 146 | 149 | 151 | 153 | 155 | 163 |  |
|             | 1800              | Suction temperature (°F)             | 66  | 67  | 69  | 70  | 71  | 72  | 76  |  |
|             | 1000              | Suction superheat (°F)               | 15  | 16  | 16  | 17  | 17  | 17  | 19  |  |
|             |                   | Outdoor unit current (A)             | 12  | 14  | 16  | 18  | 19  | 21  | 21  |  |
|             |                   | Indoor coil temperature drop<br>(°F) | 18  | 17  | 16  | 16  | 15  | 15  | 13  |  |

(i) **Note:** Drive output is limited in the shaded area. Performance may vary and interpolation is not permissable.

# HMH72B481S heating service data

### Table 13: HMH72B481S with nominal coil at 82°F setting

| Indoor | Indoor            | Heating service data              |     |     |     |     |     |     |  |  |  |
|--------|-------------------|-----------------------------------|-----|-----|-----|-----|-----|-----|--|--|--|
|        | airflow<br>(SCFM) | Outdoor temperature (°F)          | 60  | 47  | 40  | 30  | 17  | 10  |  |  |  |
|        |                   | Liquid pressure (PSIG)            | 322 | 299 | 286 | 269 | 246 | 234 |  |  |  |
|        | 1200              | Liquid temperature (°F)           | 100 | 94  | 91  | 87  | 81  | 78  |  |  |  |
|        | 1200              | Outdoor unit current (A)          | 16  | 15  | 15  | 14  | 13  | 12  |  |  |  |
|        |                   | Indoor coil temperature rise (°F) | 40  | 34  | 34  | 26  | 21  | 17  |  |  |  |
|        |                   | Liquid pressure (PSIG)            | 297 | 278 | 268 | 254 | 235 | 225 |  |  |  |
| 60     | 1500              | Liquid temperature (°F)           | 94  | 89  | 87  | 83  | 78  | 76  |  |  |  |
| 60     | 1500              | Outdoor unit current (A)          | 15  | 15  | 14  | 13  | 13  | 12  |  |  |  |
|        |                   | Indoor coil temperature rise (°F) | 33  | 29  | 28  | 22  | 18  | 15  |  |  |  |
|        |                   | Liquid pressure (PSIG)            | 271 | 256 | 249 | 238 | 223 | 215 |  |  |  |
|        | 1800              | Liquid temperature (°F)           | 88  | 84  | 82  | 79  | 75  | 73  |  |  |  |
|        | 1800              | Outdoor unit current (A)          | 14  | 14  | 13  | 13  | 12  | 12  |  |  |  |
|        |                   | Indoor coil temperature rise (°F) | 26  | 23  | 21  | 18  | 15  | 13  |  |  |  |

| Table 13: HMH72B481S with | nominal coil at 82°F setting |
|---------------------------|------------------------------|
|---------------------------|------------------------------|

| Indoor              | Indoor            | Heating service data              |     |     |     |     |     |     |
|---------------------|-------------------|-----------------------------------|-----|-----|-----|-----|-----|-----|
| temperature<br>(°F) | airflow<br>(SCFM) | Outdoor temperature (°F)          | 60  | 47  | 40  | 30  | 17  | 10  |
|                     |                   | Liquid pressure (PSIG)            | 427 | 395 | 377 | 352 | 320 | 302 |
|                     | 1200              | Liquid temperature (°F)           | 96  | 90  | 88  | 84  | 78  | 76  |
|                     | 1200              | Outdoor unit current (A)          | 10  | 10  | 10  | 9   | 8   | 8   |
|                     |                   | Indoor coil temperature rise (°F) | 38  | 33  | 30  | 26  | 20  | 17  |
|                     |                   | Liquid pressure (PSIG)            | 394 | 366 | 351 | 330 | 302 | 287 |
| 70                  | 1500              | Liquid temperature (°F)           | 90  | 86  | 84  | 81  | 77  | 74  |
| 70                  | 1500              | Outdoor unit current (A)          | 10  | 9   | 9   | 9   | 8   | 8   |
|                     |                   | Indoor coil temperature rise (°F) | 31  | 27  | 24  | 21  | 16  | 14  |
|                     |                   | Liquid pressure (PSIG)            | 360 | 337 | 325 | 307 | 285 | 272 |
|                     | 1800              | Liquid temperature (°F)           | 85  | 82  | 80  | 78  | 75  | 73  |
|                     | 1000              | Outdoor unit current (A)          | 9   | 9   | 8   | 8   | 8   | 8   |
|                     |                   | Indoor coil temperature rise (°F) | 24  | 21  | 19  | 16  | 13  | 11  |
|                     |                   | Liquid pressure (PSIG)            | 406 | 379 | 364 | 343 | 317 | 302 |
|                     | 1200              | Liquid temperature (°F)           | 117 | 111 | 108 | 104 | 98  | 95  |
|                     | 1200              | Outdoor unit current (A)          | 20  | 18  | 18  | 17  | 15  | 15  |
|                     |                   | Indoor coil temperature rise (°F) | 37  | 32  | 29  | 24  | 19  | 16  |
|                     |                   | Liquid pressure (PSIG)            | 378 | 355 | 343 | 325 | 303 | 291 |
| 80                  | 1500              | Liquid temperature (°F)           | 112 | 107 | 104 | 100 | 95  | 93  |
| 80                  | 1500              | Outdoor unit current (A)          | 19  | 17  | 17  | 16  | 15  | 14  |
|                     |                   | Indoor coil temperature rise (°F) | 31  | 27  | 24  | 20  | 16  | 13  |
|                     | 1000              | Liquid pressure (PSIG)            | 349 | 331 | 321 | 307 | 289 | 279 |
|                     |                   | Liquid temperature (°F)           | 106 | 102 | 100 | 96  | 92  | 90  |
|                     | 1800              | Outdoor unit current (A)          | 17  | 17  | 16  | 15  | 14  | 14  |
|                     |                   | Indoor coil temperature rise (°F) | 25  | 21  | 19  | 16  | 12  | 10  |

# HMH72B601S cooling service data

# Table 14: HMH72B601S with nominal coil at 82°F setting

| Indoor DB / | Indoor            | Cooling service data                 |     |     |     |     |     |     |
|-------------|-------------------|--------------------------------------|-----|-----|-----|-----|-----|-----|
| WB (°F)     | airflow<br>(SCFM) | Outdoor temperature (°F)             | 55  | 65  | 75  | 85  | 95  | 105 |
|             |                   | Liquid pressure (PSIG)               | 203 | 246 | 288 | 331 | 373 | 416 |
|             |                   | Liquid temperature (°F)              | 69  | 80  | 90  | 101 | 111 | 122 |
|             |                   | Suction pressure (PSIG)              | 97  | 100 | 103 | 107 | 110 | 113 |
|             | 1500              | Suction temperature (°F)             | 54  | 55  | 57  | 58  | 59  | 60  |
|             |                   | Suction superheat (°F)               | 24  | 23  | 22  | 22  | 21  | 21  |
|             |                   | Outdoor unit current (A)             | 17  | 19  | 21  | 23  | 25  | 27  |
|             |                   | Indoor coil temperature drop<br>(°F) | 26  | 26  | 25  | 24  | 24  | 23  |
|             |                   | Liquid pressure (PSIG)               | 204 | 247 | 290 | 332 | 375 | 417 |
|             |                   | Liquid temperature (°F)              | 69  | 80  | 90  | 101 | 111 | 122 |
|             |                   | Suction pressure (PSIG)              | 99  | 102 | 106 | 109 | 112 | 115 |
| 75/62       | 1750              | Suction temperature (°F)             | 59  | 60  | 60  | 61  | 62  | 63  |
| , 3, 32     | 1750              | Suction superheat (°F)               | 27  | 26  | 25  | 25  | 24  | 23  |
|             |                   | Outdoor unit current (A)             | 17  | 19  | 21  | 23  | 25  | 27  |
|             |                   | Indoor coil temperature drop<br>(°F) | 24  | 24  | 23  | 23  | 22  | 22  |
|             |                   | Liquid pressure (PSIG)               | 205 | 248 | 291 | 333 | 376 | 418 |
|             |                   | Liquid temperature (°F)              | 69  | 80  | 90  | 101 | 112 | 122 |
|             | 2000              | Suction pressure (PSIG)              | 102 | 105 | 108 | 111 | 114 | 117 |
|             |                   | Suction temperature (°F)             | 63  | 64  | 64  | 65  | 66  | 66  |
|             | 2000              | Suction superheat (°F)               | 30  | 29  | 28  | 27  | 26  | 26  |
|             |                   | Outdoor unit current (A)             | 17  | 19  | 21  | 23  | 26  | 28  |
|             |                   | Indoor coil temperature drop<br>(°F) | 22  | 21  | 21  | 21  | 20  | 20  |
|             |                   | Liquid pressure (PSIG)               | 199 | 242 | 285 | 329 | 372 | 415 |
|             | 1500              | Liquid temperature (°F)              | 69  | 79  | 90  | 100 | 111 | 121 |
|             |                   | Suction pressure (PSIG)              | 92  | 95  | 98  | 101 | 103 | 106 |
|             |                   | Suction temperature (°F)             | 58  | 59  | 59  | 60  | 61  | 62  |
|             |                   | Suction superheat (°F)               | 30  | 29  | 28  | 27  | 27  | 26  |
|             |                   | Outdoor unit current (A)             | 17  | 19  | 21  | 23  | 25  | 27  |
|             |                   | Indoor coil temperature drop<br>(°F) | 34  | 34  | 33  | 32  | 32  | 31  |
|             |                   | Liquid pressure (PSIG)               | 204 | 247 | 291 | 334 | 377 | 420 |
|             |                   | Liquid temperature (°F)              | 69  | 80  | 90  | 101 | 111 | 122 |
|             |                   | Suction pressure (PSIG)              | 95  | 98  | 101 | 104 | 107 | 110 |
| 90/57       | 1750              | Suction temperature (°F)             | 60  | 61  | 62  | 63  | 64  | 64  |
| 80/57       | 1750              | Suction superheat (°F)               | 30  | 29  | 29  | 28  | 28  | 27  |
|             |                   | Outdoor unit current (A)             | 17  | 19  | 21  | 23  | 25  | 27  |
|             |                   | Indoor coil temperature drop<br>(°F) | 32  | 31  | 30  | 30  | 29  | 28  |
|             |                   | Liquid pressure (PSIG)               | 209 | 252 | 296 | 339 | 382 | 425 |
|             |                   | Liquid temperature (°F)              | 70  | 80  | 91  | 101 | 112 | 122 |
|             |                   | Suction pressure (PSIG)              | 98  | 101 | 105 | 108 | 111 | 114 |
|             | 2000              | Suction temperature (°F)             | 62  | 63  | 64  | 65  | 66  | 67  |
|             | 2000              | Suction superheat (°F)               | 31  | 30  | 29  | 29  | 28  | 28  |
|             |                   | Outdoor unit current (A)             | 17  | 19  | 21  | 23  | 26  | 28  |
|             |                   | Indoor coil temperature drop<br>(°F) | 29  | 28  | 28  | 27  | 26  | 26  |

#### Table 14: HMH72B601S with nominal coil at 82°F setting

| Indoor DB / | Indoor            | Cooling service data                 |          |     |     |     |     |     |
|-------------|-------------------|--------------------------------------|----------|-----|-----|-----|-----|-----|
| WB (°F)     | airflow<br>(SCFM) | Outdoor temperature (°F)             | 55       | 65  | 75  | 85  | 95  | 105 |
|             |                   | Liquid pressure (PSIG)               | 203      | 246 | 289 | 331 | 374 | 417 |
|             |                   | Liquid temperature (°F)              | 69       | 80  | 90  | 101 | 111 | 122 |
|             |                   | Suction pressure (PSIG)              | 98       | 101 | 104 | 107 | 110 | 112 |
|             | 1500              | Suction temperature (°F)             | 60       | 61  | 61  | 62  | 62  | 63  |
|             | 1500              | Suction superheat (°F)               | 29<br>17 | 28  | 27  | 26  | 25  | 25  |
|             |                   | Outdoor unit current (A)             |          | 19  | 21  | 23  | 25  | 27  |
|             |                   | Indoor coil temperature drop<br>(°F) | 30       | 30  | 29  | 29  | 28  | 28  |
|             |                   | Liquid pressure (PSIG)               | 204      | 247 | 290 | 333 | 376 | 418 |
|             |                   | Liquid temperature (°F)              | 69       | 80  | 90  | 101 | 112 | 122 |
|             |                   | Suction pressure (PSIG)              | 100      | 103 | 106 | 109 | 112 | 115 |
| 30/62       | 1750              | Suction temperature (°F)             | 63       | 64  | 64  | 65  | 65  | 66  |
| 0/02        | 1750              | Suction superheat (°F)               | 31       | 30  | 29  | 28  | 27  | 26  |
|             |                   | Outdoor unit current (A)             | 17       | 19  | 21  | 23  | 25  | 28  |
|             |                   | Indoor coil temperature drop<br>(°F) | 28       | 27  | 27  | 27  | 26  | 26  |
|             |                   | Liquid pressure (PSIG)               | 205      | 248 | 291 | 334 | 377 | 420 |
|             |                   | Liquid temperature (°F)              | 69       | 80  | 90  | 101 | 112 | 123 |
|             |                   | Suction pressure (PSIG)              | 103      | 106 | 109 | 112 | 115 | 118 |
|             | 2000              | Suction temperature (°F)             | 66       | 67  | 67  | 67  | 68  | 68  |
|             | 2000              | Suction superheat (°F)               | 32       | 31  | 30  | 29  | 28  | 27  |
|             |                   | Outdoor unit current (A)             | 17       | 19  | 21  | 23  | 26  | 28  |
|             |                   | Indoor coil temperature drop<br>(°F) | 25       | 25  | 25  | 24  | 24  | 24  |
|             |                   | Liquid pressure (PSIG)               | 207      | 250 | 293 | 336 | 379 | 422 |
|             | 1500              | Liquid temperature (°F)              | 69       | 80  | 91  | 101 | 112 | 123 |
|             |                   | Suction pressure (PSIG)              | 103      | 107 | 111 | 115 | 118 | 122 |
|             |                   | Suction temperature (°F)             | 66       | 67  | 67  | 68  | 68  | 69  |
|             |                   | Suction superheat (°F)               | 32       | 31  | 30  | 28  | 27  | 26  |
|             |                   | Outdoor unit current (A)             | 17       | 19  | 21  | 24  | 26  | 28  |
|             |                   | Indoor coil temperature drop<br>(°F) | 25       | 25  | 24  | 24  | 23  | 23  |
|             |                   | Liquid pressure (PSIG)               | 208      | 251 | 294 | 337 | 380 | 424 |
|             |                   | Liquid temperature (°F)              | 69       | 80  | 91  | 101 | 112 | 123 |
|             |                   | Suction pressure (PSIG)              | 105      | 109 | 113 | 117 | 121 | 125 |
| 0/67        | 1750              | Suction temperature (°F)             | 68       | 69  | 69  | 70  | 70  | 71  |
| 30/67       | 1750              | Suction superheat (°F)               | 33       | 32  | 31  | 30  | 28  | 27  |
|             |                   | Outdoor unit current (A)             | 17       | 19  | 22  | 24  | 26  | 28  |
|             |                   | Indoor coil temperature drop<br>(°F) | 23       | 23  | 22  | 22  | 21  | 21  |
|             |                   | Liquid pressure (PSIG)               | 209      | 252 | 296 | 339 | 382 | 425 |
|             |                   | Liquid temperature (°F)              | 69       | 79  | 90  | 101 | 112 | 123 |
|             |                   | Suction pressure (PSIG)              | 107      | 111 | 115 | 119 | 123 | 127 |
|             | 2000              | Suction temperature (°F)             | 70       | 71  | 71  | 72  | 72  | 73  |
|             | 2000              | Suction superheat (°F)               | 35       | 33  | 32  | 31  | 29  | 28  |
|             |                   | Outdoor unit current (A)             | 17       | 20  | 22  | 24  | 26  | 28  |
|             |                   | Indoor coil temperature drop<br>(°F) | 21       | 20  | 20  | 20  | 19  | 19  |

| Indoor DB / | Indoor            | Cooling service data                 |     |     |     |     |     |     |
|-------------|-------------------|--------------------------------------|-----|-----|-----|-----|-----|-----|
| WB (°F)     | airflow<br>(SCFM) | Outdoor temperature (°F)             | 55  | 65  | 75  | 85  | 95  | 105 |
|             |                   | Liquid pressure (PSIG)               | 209 | 252 | 296 | 339 | 382 | 425 |
|             |                   | Liquid temperature (°F)              | 68  | 79  | 90  | 101 | 112 | 123 |
|             |                   | Suction pressure (PSIG)              | 107 | 112 | 116 | 120 | 124 | 129 |
|             | 1500              | Suction temperature (°F)             | 71  | 71  | 72  | 72  | 73  | 73  |
|             | 1500              | Suction superheat (°F)               | 35  | 33  | 32  | 30  | 29  | 28  |
|             |                   | Outdoor unit current (A)             | 17  | 20  | 22  | 24  | 26  | 28  |
|             |                   | Indoor coil temperature drop<br>(°F) | 20  | 20  | 20  | 19  | 19  | 19  |
|             |                   | Liquid pressure (PSIG)               | 210 | 254 | 297 | 341 | 384 | 428 |
|             |                   | Liquid temperature (°F)              | 68  | 79  | 90  | 101 | 113 | 124 |
|             |                   | Suction pressure (PSIG)              | 109 | 113 | 118 | 122 | 127 | 131 |
| 80/72       | 1750              | Suction temperature (°F)             | 72  | 72  | 73  | 73  | 74  | 75  |
| 00/72       | 1750              | Suction superheat (°F)               | 35  | 34  | 32  | 31  | 30  | 29  |
|             |                   | Outdoor unit current (A)             | 17  | 20  | 22  | 24  | 26  | 29  |
|             |                   | Indoor coil temperature drop<br>(°F) | 19  | 18  | 18  | 17  | 17  | 17  |
|             |                   | Liquid pressure (PSIG)               | 211 | 255 | 298 | 342 | 386 | 430 |
|             |                   | Liquid temperature (°F)              | 67  | 79  | 90  | 101 | 113 | 124 |
|             |                   | Suction pressure (PSIG)              | 110 | 115 | 119 | 124 | 129 | 133 |
|             | 2000              | Suction temperature (°F)             | 73  | 74  | 74  | 75  | 75  | 76  |
|             | 2000              | Suction superheat (°F)               | 36  | 34  | 33  | 31  | 30  | 29  |
|             |                   | Outdoor unit current (A)             | 17  | 20  | 22  | 24  | 27  | 29  |
|             |                   | Indoor coil temperature drop<br>(°F) | 17  | 16  | 16  | 16  | 15  | 15  |

#### Table 14: HMH72B601S with nominal coil at 82°F setting

 Note: Drive output is limited in the shaded area. Performance may vary and interpolation is not permissable.

# HMH72B601S heating service data

### Table 15: HMH72B601S with nominal coil at 82°F setting

| Indoor | Indoor            | Heating service data              |     |     |     |     |     |     |
|--------|-------------------|-----------------------------------|-----|-----|-----|-----|-----|-----|
|        | airflow<br>(SCFM) | Outdoor temperature (°F)          | 60  | 47  | 40  | 30  | 17  | 10  |
|        |                   | Liquid pressure (PSIG)            | 304 | 285 | 275 | 261 | 242 | 232 |
|        | 1500              | Liquid temperature (°F)           | 96  | 91  | 89  | 85  | 81  | 78  |
|        | 1500              | Outdoor unit current (A)          | 19  | 18  | 18  | 17  | 16  | 15  |
|        |                   | Indoor coil temperature rise (°F) | 35  | 31  | 28  | 25  | 21  | 18  |
|        |                   | Liquid pressure (PSIG)            | 288 | 272 | 263 | 251 | 234 | 225 |
| 60     | 1750              | Liquid temperature (°F)           | 92  | 88  | 86  | 83  | 79  | 76  |
| 60     | 1750              | Outdoor unit current (A)          | 19  | 18  | 17  | 16  | 16  | 15  |
|        |                   | Indoor coil temperature rise (°F) | 35  | 31  | 28  | 25  | 21  | 18  |
|        |                   | Liquid pressure (PSIG)            | 272 | 258 | 250 | 240 | 226 | 218 |
| 200    | 2000              | Liquid temperature (°F)           | 88  | 85  | 83  | 80  | 76  | 74  |
|        | 2000              | Outdoor unit current (A)          | 18  | 17  | 17  | 16  | 15  | 15  |
|        |                   | Indoor coil temperature rise (°F) | 35  | 31  | 28  | 25  | 21  | 18  |

| Indoor              | Indoor            | Heating service data              |     |     |     |     |     |     |
|---------------------|-------------------|-----------------------------------|-----|-----|-----|-----|-----|-----|
| temperature<br>(°F) | airflow<br>(SCFM) | Outdoor temperature (°F)          | 60  | 47  | 40  | 30  | 17  | 10  |
|                     |                   | Liquid pressure (PSIG)            | 427 | 395 | 377 | 352 | 320 | 302 |
|                     | 1500              | Liquid temperature (°F)           | 96  | 90  | 88  | 84  | 78  | 76  |
|                     | 1500              | Outdoor unit current (A)          | 10  | 10  | 10  | 9   | 8   | 8   |
|                     |                   | Indoor coil temperature rise (°F) | 38  | 33  | 30  | 26  | 20  | 17  |
|                     |                   | Liquid pressure (PSIG)            | 394 | 366 | 351 | 330 | 302 | 287 |
| 70                  | 1750              | Liquid temperature (°F)           | 90  | 86  | 84  | 81  | 77  | 74  |
|                     | 1750              | Outdoor unit current (A)          | 10  | 9   | 9   | 9   | 8   | 8   |
|                     |                   | Indoor coil temperature rise (°F) | 31  | 27  | 24  | 21  | 16  | 14  |
|                     |                   | Liquid pressure (PSIG)            | 360 | 337 | 325 | 307 | 285 | 272 |
|                     | 2000              | Liquid temperature (°F)           | 85  | 82  | 80  | 78  | 75  | 73  |
|                     | 2000              | Outdoor unit current (A)          | 9   | 9   | 8   | 8   | 8   | 8   |
|                     |                   | Indoor coil temperature rise (°F) | 24  | 21  | 19  | 16  | 13  | 11  |
|                     |                   | Liquid pressure (PSIG)            | 380 | 357 | 344 | 326 | 303 | 290 |
|                     | 1500              | Liquid temperature (°F)           | 112 | 107 | 104 | 101 | 96  | 93  |
|                     | 1500              | Outdoor unit current (A)          | 23  | 21  | 20  | 19  | 18  | 17  |
|                     |                   | Indoor coil temperature rise (°F) | 33  | 28  | 25  | 22  | 17  | 15  |
|                     |                   | Liquid pressure (PSIG)            | 366 | 346 | 335 | 319 | 299 | 287 |
| 30                  | 1750              | Liquid temperature (°F)           | 110 | 105 | 103 | 100 | 95  | 93  |
| 50                  | 1750              | Outdoor unit current (A)          | 22  | 21  | 20  | 19  | 18  | 17  |
|                     |                   | Indoor coil temperature rise (°F) | 30  | 26  | 23  | 20  | 16  | 14  |
|                     |                   | Liquid pressure (PSIG)            | 352 | 334 | 325 | 311 | 294 | 284 |
|                     | 2000              | Liquid temperature (°F)           | 107 | 103 | 101 | 98  | 94  | 92  |
|                     | 2000              | Outdoor unit current (A)          | 21  | 20  | 20  | 19  | 18  | 17  |
|                     |                   | Indoor coil temperature rise (°F) | 27  | 23  | 21  | 18  | 15  | 13  |

#### Table 15: HMH72B601S with nominal coil at 82°F setting

# Unit installation

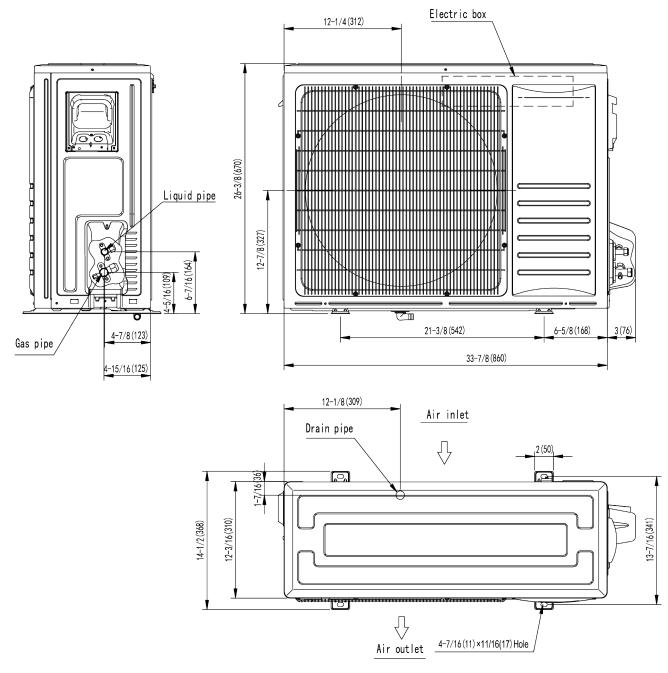
This system is intended for installation with a single indoor section.

For detailed installation instructions, refer to the *Installation Manual*.

# Specifications

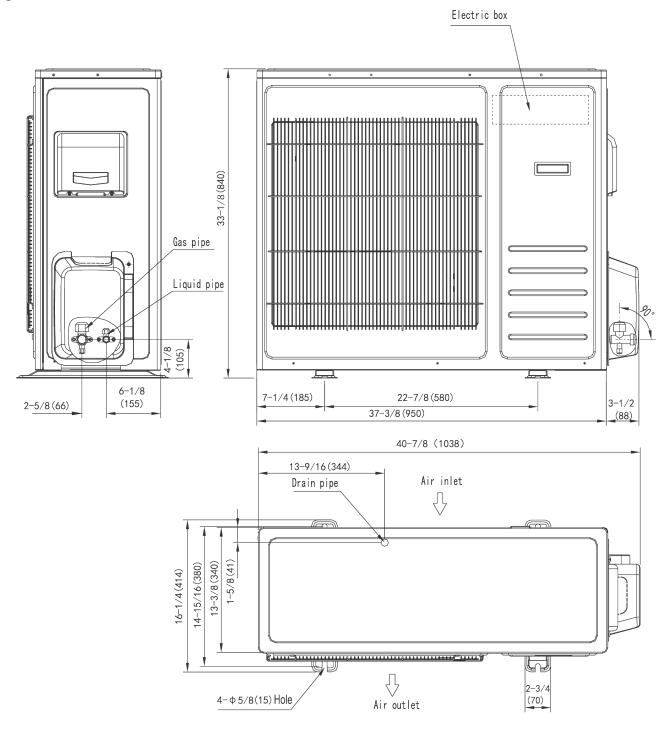
# **Table 16: Specifications**

| Outdoor mode    | 1                                   |          | HMH72B24       | HMH72B36         | HMH72B48                                  | HMH72B60                                  |
|-----------------|-------------------------------------|----------|----------------|------------------|-------------------------------------------|-------------------------------------------|
| Power supply    |                                     | V/ph/Hz  | 208~230/1/60   |                  |                                           | •                                         |
|                 | Capacity                            | Btu/h    | 22,200         | 36,000           | 48,000                                    | 58,500                                    |
|                 | Capacity<br>(minimum –<br>maximum)  | Btu/h    | 6,700 – 26,000 | 11,800 - 36,800  | 18,300 - 52,000                           | 18,300 - 59,400                           |
| Cooling         | Capacity<br>(minimum –<br>maximum)  | w        | 2,227 - 7,327  | 2814 – 10697     | 5363 - 15240                              | 5363 - 17409                              |
|                 | Input                               | W        | 2,200          | 3,730            | 4,690                                     | 6,560                                     |
|                 | Current                             | A        | 9.6            | 16.5             | 21                                        | 26.8                                      |
|                 | SEER1                               | Btu/Wh   | 17.5           | 18               | 18                                        | 17                                        |
|                 | SEER2                               | Btu/Wh   | 17             | 17.5             | 17                                        | 17                                        |
|                 | EER                                 | Btu/Wh   | 10             | 10               | 10.5                                      | 8.5                                       |
|                 | Capacity                            | Btu/h    | 24,000         | 36,000           | 48,000                                    | 56,000                                    |
|                 | Capacity(minimu<br>m – maximum)     | Btu/h    | 6,700 - 26,000 | 8,900 - 38,200   | 17,600 - 52,000                           | 17,600 - 56,600                           |
|                 | Capacity heating<br>(rated) at 47°F | Btu/h    | 22,000         | 36,800           | 46,000                                    | 56,500                                    |
| Heating         | Capacity heating<br>(rated) at 17°F | Btu/h    | 14,700         | 25,400           | 32,800                                    | 40,000                                    |
| 5               | Input                               | W        | 2,000          | 3,200            | 4,260                                     | 5,290                                     |
|                 | Current                             | A        | 8.7            | 14.1             | 19.0                                      | 21.0                                      |
|                 | HSPF1                               | Btu/Wh   | 10             | 11               | 10                                        | 10                                        |
|                 | HSPF2                               | Btu/Wh   | 9              | 9                | 8                                         | 8                                         |
|                 | СОР                                 | Qh/W     | 3.5            | 3.3              | 3.3                                       | 3.1                                       |
|                 | СОР                                 | Qh/W     | 11.95          | 11.26            | 11.26                                     | 10.58                                     |
| Minimum apaci   | ty                                  | A        | 15             | 23               | 36                                        | 37                                        |
| Maximum fuse/   | /breaker (td)                       | A        | 25             | 35               | 50                                        | 50                                        |
| Power cable     |                                     | No / AWG | 3/12           | 3/10             | 3/8                                       | 3/8                                       |
| Communicatior   | n cable                             |          | 5/18           | 5/18             | 5/18                                      | 5/18                                      |
|                 | Туре                                |          | DC             | DC               | DC                                        | DC                                        |
| Outdoor fan     | Model                               |          | ZWK511A805001  | SIC-71FW-F8121-1 | SIC-71FW-<br>D8121-1/<br>SIC-71FW-D8121-2 | SIC-71FW-<br>D8121-1/<br>SIC-71FW-D8121-2 |
| motor           | Quantity                            |          | 1              | 1                | 2                                         | 2                                         |
|                 | Output                              | W        | 60             | 121              | 121                                       | 121                                       |
|                 | Speed (high)                        | rpm      | 880            | 810              | 850                                       | 850                                       |
|                 |                                     | m3/h     | 3,100          | 3,800            | 6,300                                     | 6,300                                     |
| Outdoor airflow | I                                   | CFM      | 1,826          | 2,235            | 3,706                                     | 3,706                                     |


#### **Table 16: Specifications**

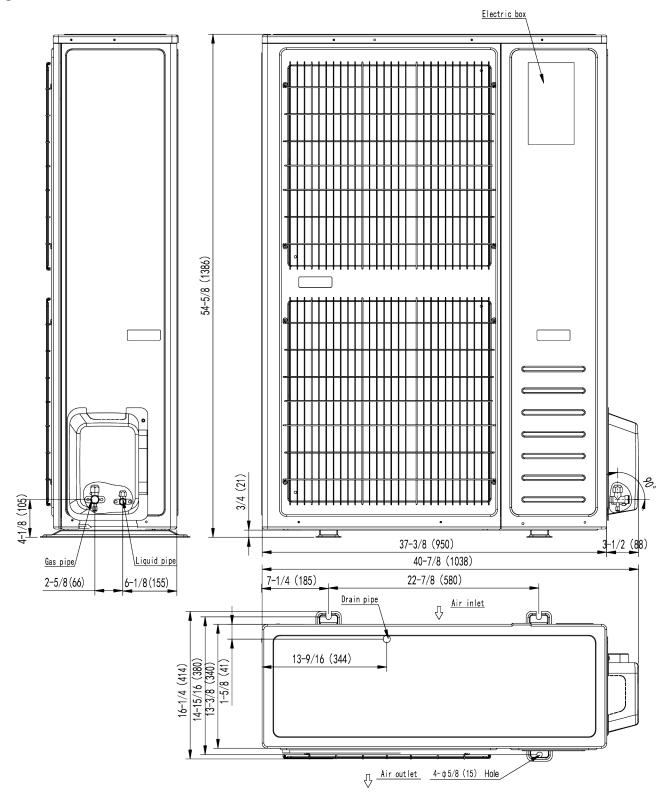
| Outdoor mode | l                |               | HMH72B24                        | HMH72B36                     | HMH72B48                 | HMH72B60                   |  |  |  |  |
|--------------|------------------|---------------|---------------------------------|------------------------------|--------------------------|----------------------------|--|--|--|--|
|              | No. of rows      |               | 2                               |                              |                          | •                          |  |  |  |  |
|              | Tube pitch (a)   | in. (mm)      | 0.827 (21)                      | 0.827 (21)                   |                          |                            |  |  |  |  |
|              | Row pitch (b)    | in. (mm)      | 0.852 (21.65)                   | 0.852 (21.65)                |                          |                            |  |  |  |  |
|              | Fin spacing      | Fins per inch | 18                              | 19                           | 17                       | 18                         |  |  |  |  |
|              | Fin spacing      | mm            | 1.4                             | 1.3                          | 1.5                      | 1.4                        |  |  |  |  |
| Outdoor coil | Coil dimensions  | (in.)         | (35 5/8 + 34) × 25<br>1/4 × 7/8 | 38 3/16 × 31 3/8 ×<br>1 1/16 | 38 3/16 × 53 × 1<br>7/16 | 38 3/16 × 53 × 1<br>11/16  |  |  |  |  |
|              | (WxHxD)          | mm            | (900 + 866) × 630 ×<br>21.65    | 970 × 798 × 43.3             | 970 × 1,344 × 36.38      | 970 × 1,344 × 43.3         |  |  |  |  |
|              | Fin type         |               | Hydrophilic alumin              | um                           |                          | •                          |  |  |  |  |
|              | Tube OD and type |               | Φ7.94,<br>innergroove tube      | Φ7.94,<br>innergroove tube   | , ,                      | Φ7.94,<br>innergroove tube |  |  |  |  |
|              | No. of circuits  |               | 6                               | 5                            | 6                        | 6                          |  |  |  |  |

| Outdoor model                 |                          |          | HMH72B24                    | HMH72B36                    | HMH72B48                    | HMH72B60                    |
|-------------------------------|--------------------------|----------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| Outdoor sound (SP             | PL) high speed           | dBA      | 65                          | 70                          | 71                          | 73                          |
|                               | Model                    |          | EATF250D22UMT               | EATF250D22UMT               | EATF400D64UMTA              | EATF400D64UMTA              |
|                               | Brand                    |          | GMCC                        | GMCC                        | GMCC                        | GMCC                        |
|                               | Туре                     |          | Twin Rotary                 | Twin Rotary                 | Twin Rotary                 | Twin Rotary                 |
|                               | Capacity                 | CFM      | 26,085                      | 26,085                      | 41,865                      | 41,865                      |
| Compressor                    | Input                    |          | 2,080                       | 2,080                       | 3,385                       | 3,385                       |
|                               | Rated current<br>(RLA)   | A        | 9.45                        | 9.45                        | 15.39                       | 15.39                       |
|                               | Defrigerent eil          | oz       | VG74/22.7                   | VG74/22.8                   | VG74/33.9                   | VG74/33.9                   |
|                               | Refrigerant oil          | ml       | VG74/670                    | VG74/671                    | VG74/1000                   | VG74/1000                   |
|                               | Туре                     |          | R410A                       | R410A                       | R410A                       | R410A                       |
| Refrigerant /                 | Refrigerant charge       | oz (kg)  | 71.0 (2.0)                  | 99 (2.8)                    | 143 (4.1)                   | 143 (4.1)                   |
| quantity                      | Standard lineset         | ft (m)   | 15 (4.6)                    | 15 (4.6)                    | 15 (4.6)                    | 15 (4.6)                    |
| 4                             | Additional charge/<br>ft | oz       | 0.38                        | 0.38                        | 0.6                         | 0.6                         |
| Outdoor metering              | device                   |          | EEV                         | EEV                         | EEV                         | EEV                         |
|                               | Liquid / suction         | in. (mm) | 3/8 / 5/8<br>(9.52/15.88)   | 3/8 / 3/4<br>(9.52/19.05)   | 3/8 / 7/8<br>(9.52/19.05)   | 3/8 / 7/8<br>(9.52/19.05)   |
| Refrigerant piping            | Maximum pipe<br>length   | ft (m)   | 164 (50)                    | 246 (75)                    | 246 (75)                    | 246 (75)                    |
|                               | Maximum vertical<br>rise | ft (m)   | 98 (30)                     |                             |                             |                             |
| Design pressure               | H/L                      | MPa      | 3.8/1.6                     | 3.8/1.6                     | 3.8/1.6                     | 3.8/1.6                     |
| Design pressure               |                          | psig     | 550/240                     | 550/240                     | 550/240                     | 550/240                     |
|                               | Dimension                | in.      | 33 7/8 × 26 3/8 ×<br>12 1/4 | 37 3/8 × 33 × 13<br>3/8     | 37 3/8 × 54 5/8 ×<br>13 3/8 | 37 3/8 × 54 5/8 ×<br>13 3/8 |
|                               | (WxHxD)                  | mm       | 860 × 670 × 310             | 950 × 840 × 340             | 950 × 1386 × 340            | 950 × 1,386 × 340           |
| Outdoor unit<br>physical data | Packaging                | in.      | 39 × 28 3/4 × 17<br>3/4     | 43 3/4 × 36 1/4 ×<br>18 1/8 | 43 3/4 × 60 1/4 ×<br>18 1/8 | 43 3/4 × 60 1/4 ×<br>18 1/8 |
| F 7                           | (WxHxD)                  | mm       | 990 × 730 × 450             | 1,110 × 920 × 460           | 1,110 × 1530 × 460          | 1,110 × 1,530 × 460         |
|                               | Net weight               | lb (kg)  | 112.4 (51)                  | 155.1 (70.5)                | 241.4 (109.5)               | 251.3 (114)                 |
|                               | Shipping weight          | lb (kg)  | 121.3 (55)                  | 166.4 (75.5)                | 267.9 (1,121.5)             | 277.5 (126)                 |
| Operating                     | Cooling                  | °F (°C)  | 5 to 122 (-15 to 50)        | )                           |                             |                             |
| temperature                   | Heating                  | °F (°C)  | -13 to 75 (-25 to 24        | 4)                          |                             |                             |


# Outlines and dimensions

### Figure 6: HMH72B24 dimensions




Unit : in. (mm)

#### Figure 7: HMH72B36 dimensions



Unit : in.(mm)

#### Figure 8: HMH72B48/HMH72B60 dimensions



Unit : in.(mm)

# **Electrical connections**

#### General information and grounding

O Note: This unit uses discrete thermostat wiring. Do not interface with TTSCC, Hx<sup>™</sup>, or Hx<sup>™</sup>3 thermostat communication connections. It is possible to interface with Hx<sup>™</sup> or Hx<sup>™</sup>3 conventional terminals.

# 

This equipment uses an inverter drive that stores hazardous energy up to 5 min after power is removed. Wait for more than 5 min before performing electrical work after power is removed.



Local codes may require use of an ELB (Earth Leakage Breaker) or RCD (Residual Current Device) breaker. When required, use a breaker capable of handling harmonics to prevent failure of the ELB or RCD breaker.

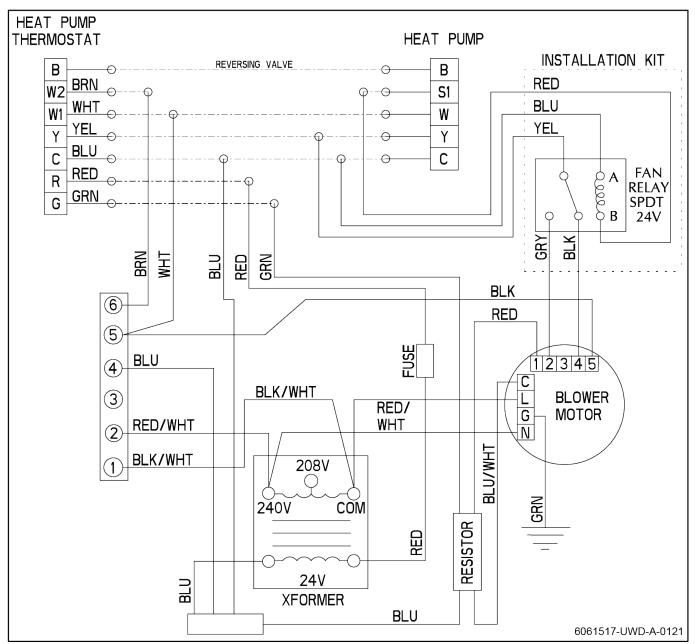
# **Field connections wiring**

#### About this task:

All field wiring must be in accordance with national electrical codes (NEC) and local city codes.

- 1. Install the correct size weatherproof disconnect switch outdoors and within sight of the unit, per local codes.
- 2. Run the power wiring from the disconnect switch to the unit.
- 3. Route the wires from the disconnect through the power wiring exit provided and into the unit control box as shown in Figure 10, Figure 11, Figure 12, and Figure 13 for the various models.
- 4. Make the power supply connections to the supplied terminal block.

- 5. Mount the thermostat 5 ft above the floor, where it is exposed to normal room air circulation. Do not place it on an outside wall or where it is exposed to the radiant effect from exposed glass or appliances, drafts from outside doors, or supply air grilles.
- 6. Route the 24-V control wiring (NEC Class 2) from the outdoor unit to the indoor unit and thermostat. Keep the low-voltage wiring 4 in. or more away from the high-voltage wires that are leaving the control box.
- 7. Wrap tape along the wire and seal any wiring holes to prevent entry of condensate water and insects. Tightly secure the power source wiring using the cord clamp inside the unit.
- 8. See the unit-specific connection instructions below.


#### Table 17: Tightening torque of each screw

| Screw | Minimum - lb·ft | Maximum - lb·ft |
|-------|-----------------|-----------------|
| Screw | (N·m)           | (N·m)           |
| M4    | 0.7 (1.0)       | 1.0 (1.3)       |
| M5    | 1.5 (2.0)       | 1.8 (2.5)       |
| M6    | 3.0 (4.0)       | 3.7 (5.0)       |
| M8    | 6.6 (9.0)       | 8.1 (11.0)      |
| M10   | 13.3 (18.0)     | 21.7 (23.0)     |

(i) **Note:** Apply adhesive to rubber bushings when not using conduit tubes to the outdoor unit.

#### **General electrical checks**

- Ensure that the field-selected electrical components (main power switches, circuit breakers, wires, conduit connectors, and wire terminals) have been properly selected according to the electrical data. Ensure that the components comply with the NEC.
- Ensure the voltage of the power supply is within 10% of nominal voltage and the ground is contained in the power supply wires. If not, electrical parts may be damaged.
- Ensure that the capacity of the power supply is of sufficient size. If not, an abnormal voltage drop when starting the unit may prevent the compressor from operating.
- Ensure that the ground wire is connected.
- Ensure that the electrical resistance is more than 2  $M\Omega$ , by measuring the resistance between the ground and the terminal of the electrical parts. If the electrical resistance is not more than 2  $M\Omega$ , do not operate the system until the electrical leakage is found and repaired.



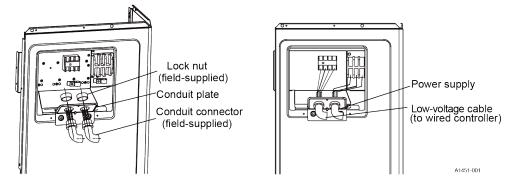
### Figure 9: Wiring diagram - HMH7 ACC STD ECM

# (i) Note:

- Use the B terminal on the thermostat for the reversing valve connection (energized in heat mode).
- The room thermostat must control fossil fuel operation if matched with a gas furnace.
- Refer to wiring and installation kit HMH7AK001 for additional wiring detail on the indoor unit.

# Connecting HMH72B24 and HMH72B36

# wiring


# About this task:

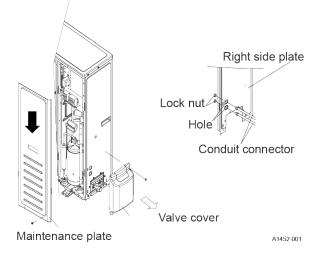
Connect wiring to the unit by completing the following steps.

- 1. Unscrew the mounting screws to remove the electric box cover.
- 2. Fasten the power supply cable and the low-voltage cable to the conduit holder using the lock nut.
- 3. Connect the power supply cable and the low-voltage cable to the terminal.
- 4. Fasten the power supply cable and the low-voltage cable with the cable clamp.
- 5. Make sure to seal any holes when wiring is complete. Place the cables side to side (do not overlap the cables).

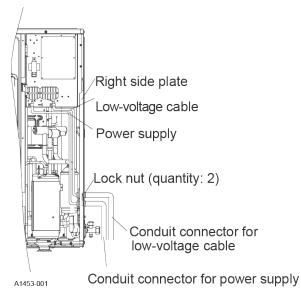
6. Re-install the electric box cover when wiring is complete.

# Figure 10: HMH72B24 and HMH72B36 wiring




# Connecting HMH72B48 and HMH72B60 wiring

# About this task:


Connect wiring to the unit by completing the following steps.

- 1. Remove the screws, maintenance plate, and the valve cover.
- 2. Pass the low-voltage cable and power supply through the two holes on the right side plate.
- 3. Fasten the conduit connection to the right side plate using the lock nut.
- 4. Connect the low-voltage cable and power supply to the terminal.
- 5. Secure the low-voltage cable and power supply with the clamp tightly.
- 6. Make sure to seal all holes when wiring is complete.
- 7. Replace the maintenance plate and the valve cover when wiring is complete.

# Figure 11: HMH72B48 and HMH72B60 wiring (1)



# Figure 12: HMH72B48 and HMH72B60 wiring (2)



# Figure 13: HMH72B48 and HMH72B60 wiring (3)

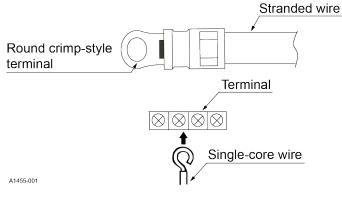


# Electrical data

### **Table 18: Electrical data**

| Model (capacity)      | Power supply      |    |    |            | g_         | Circuit breaker<br>(A) |
|-----------------------|-------------------|----|----|------------|------------|------------------------|
| HMH72B24              | 208/230 V~ /60 Hz | 25 | 30 | 3 x 12 AWG | 5 x 16 AWG | 25                     |
| HMH72B36              | 208/230 V~ /60 Hz | 35 | 30 | 3 x 10 AWG | 5 x 16 AWG | 35                     |
| HMH72B48,<br>HMH72B60 | 208/230 V~ /60 Hz | 50 | 30 | 3 x 8 AWG  | 5 x 16 AWG | 50                     |

\*Where required by code


Note: Maximum running current (A): refer to the (i) nameplate.

(i) Note:

- Follow local codes and regulations when selecting field wires and ensure all wires are the minimum wire size.
- When the low-voltage cable is longer than 262 ft . (80 m), select a larger wire size.
- Install a main switch and an ELB/RCD for each system separately. Select a high-response ELB/ RCD that acts within 0.1 s.

NOTICE When connecting to the terminal block using a stranded wire, make sure to use the round crimp-style solderless terminal.

# Figure 14: Connecting the power supply



# Performing a test run

### About this task:

Perform a test run after the refrigerant piping, drain, and wiring are finished.

# 

The outdoor section is provided with a compressor and base heater. Check to ensure the main power has been on for more than 6 h ahead of unit operation to avoid damage to the compressor.

# CAUTION

Do not operate the system until all the checks have been performed.

- 1. Check to ensure that the service base valves of the outdoor unit are fully open.
- Check to ensure that the electric wires are fully 2. connected.
- 3. Use the thermostat to turn on the system and then proceed with the test run.
- Turn off the power after the test run is finished. 4.

# WARNING

Do not touch any of the parts at the discharge gas side by hand. The compressor chamber and the pipes at the discharge side are heated to temperatures higher than 194°F (90°C).

# **Technical information**



#### **Electrical Shock Hazard**

Disconnect and lock out power before servicing. Wait 5 min to ensure that drive capacitors are discharged before servicing. Use compressor with grounded system only. Molded electrical plug must be used for connection to compressor.



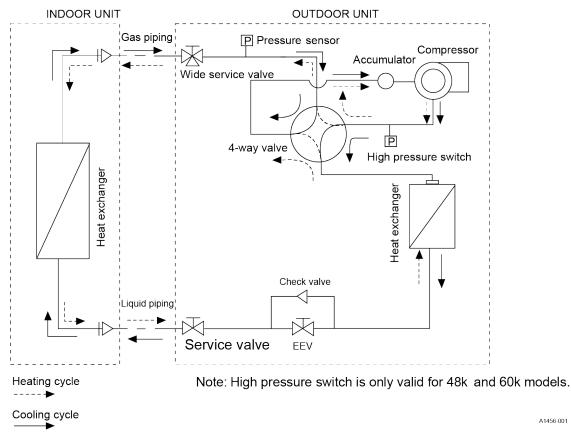
#### **Burn Hazard**

Failure to follow these warnings could result in serious personal injury or property damage. Ensure that materials and wiring do not touch high temperature areas of the compressor. Personal safety equipment must be used.

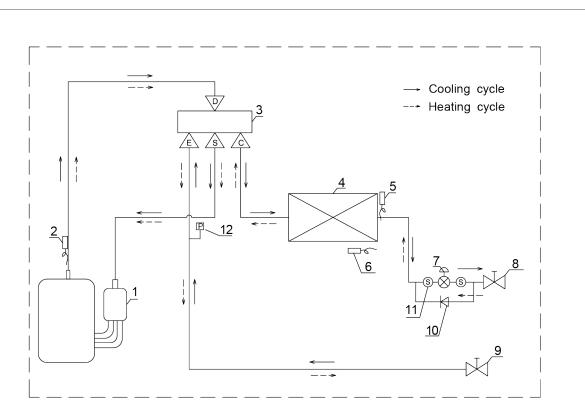
### Refrigerant circuit

### Figure 15: Refrigerant circuit diagram

# 


#### **Drive Handling**

Caution must be used when lifting and installing the drive. Failure to use caution may result in bodily injury. Personal safety equipment must be used. Failure to follow these warnings could result in personal injury or property damage.

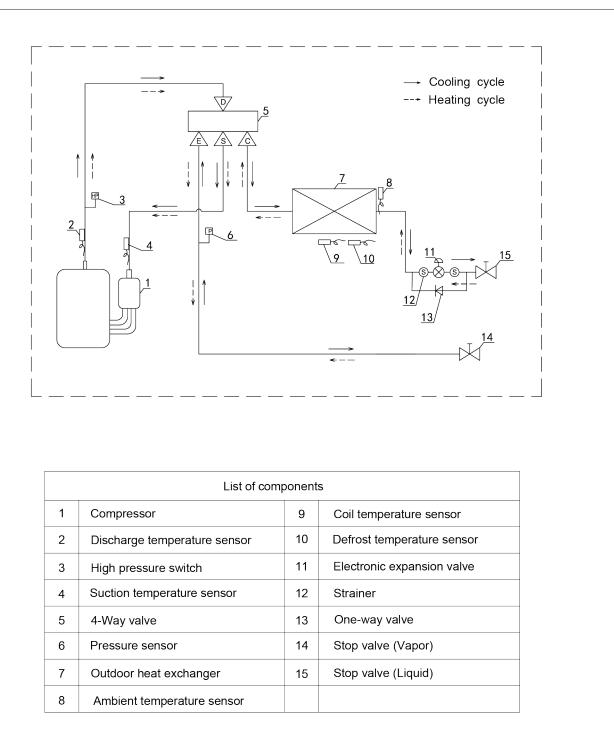



#### **Safety Statements**

Only qualified and authorized HVAC or refrigeration personnel are permitted to install, commission and maintain this equipment. Electrical connections must be made by qualified electrical personnel. All valid standards and codes for installing, servicing, and maintaining electrical and refrigeration equipment must be observed.








|   | List of components           |    |                            |  |  |  |  |
|---|------------------------------|----|----------------------------|--|--|--|--|
| 1 | Compressor                   | 7  | Electronic expansion valve |  |  |  |  |
| 2 | Discharge temperature sensor | 8  | Stop valve (Liquid)        |  |  |  |  |
| 3 | 4-Way valve                  | 9  | Stop valve (Vapor)         |  |  |  |  |
| 4 | Outdoor heat exchanger       | 10 | One-way valve              |  |  |  |  |
| 5 | Coil temperature sensor      | 11 | Strainer                   |  |  |  |  |
| 6 | Ambient temperature sensor   | 12 | Pressure sensor            |  |  |  |  |

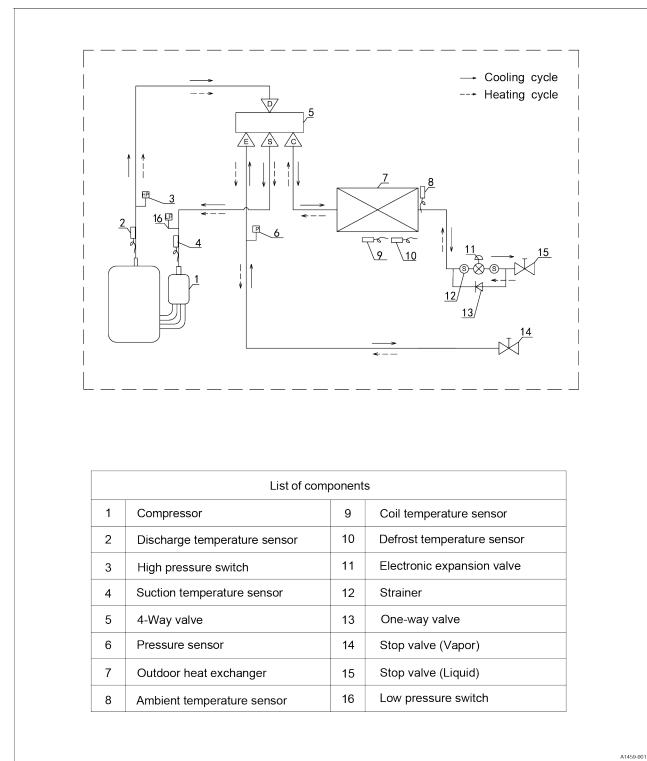
A1457-001

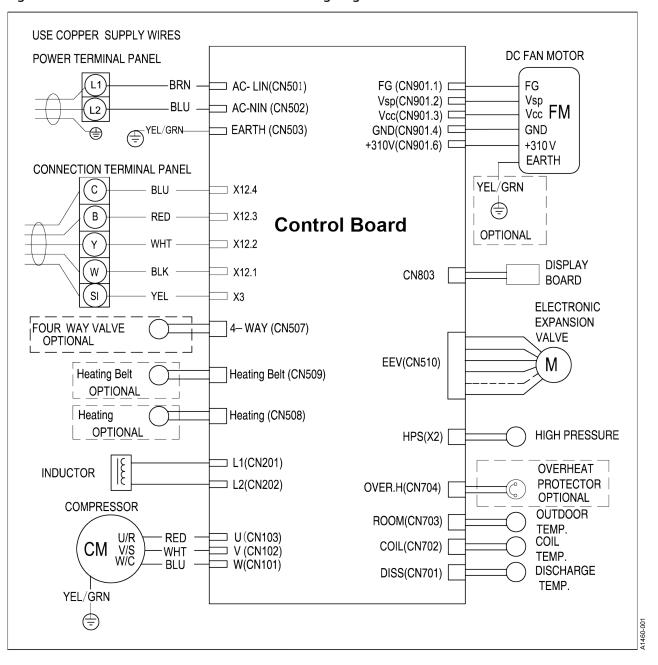
32 Service Data Application Guide: H Series - 17 SEER Horizontal Discharge Modulating Heat Pump





A1458-001





Figure 18: Outdoor unit - HMH72B48 and HMH72B60

# Wiring diagrams



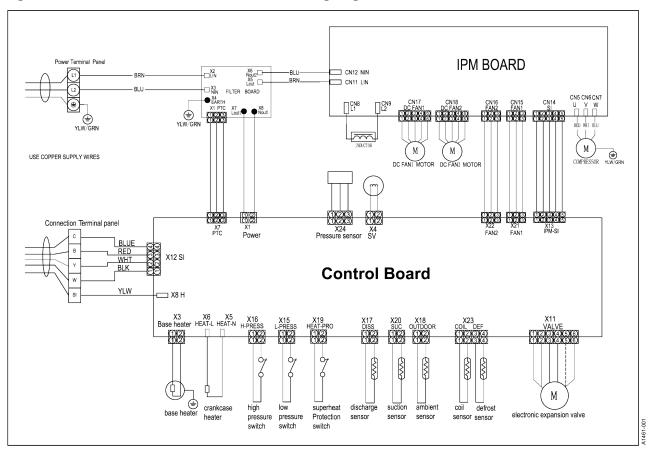
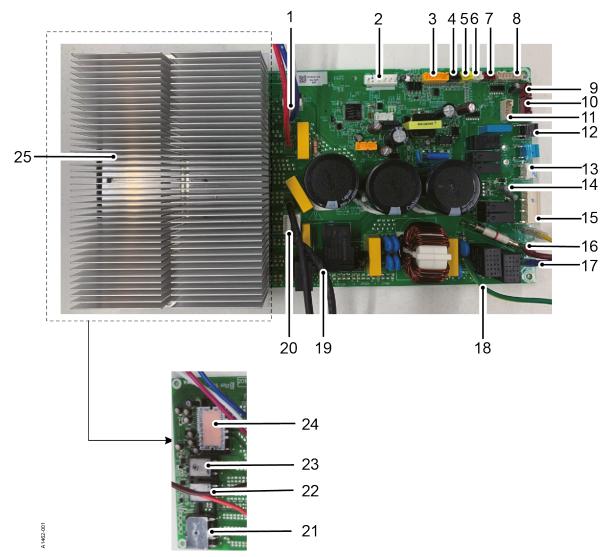

performing electrical work after power is removed.

Figure 19: HMH72B24 and HMH72B36 electrical wiring diagram



Service Data Application Guide: H Series - 17 SEER Horizontal Discharge Modulating Heat Pump 35


Figure 20: HMH72B48 and HMH72B60 electrical wiring diagram



For DIP switch settings, see Setting the DIP switch of the outdoor unit.

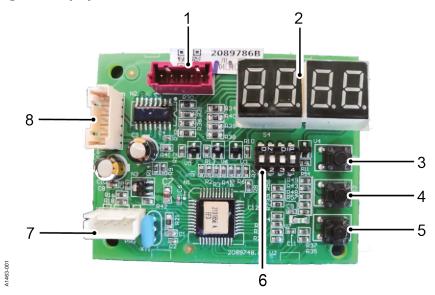
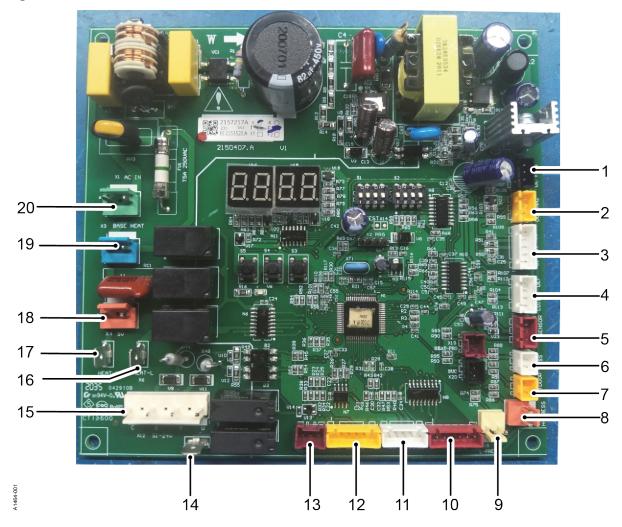

# Control board

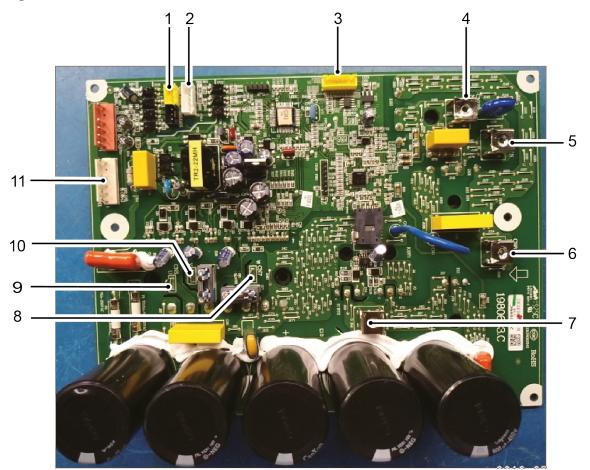
Figure 21: Main control board - HMH72B24/HMH72B36




| No. | Description                  | No. | Description      |
|-----|------------------------------|-----|------------------|
| 1   | Compressor                   | 14  | Heater           |
| 2   | DC fan                       | 15  | SI               |
| 3   | EE                           | 16  | AC power LIN     |
| 4   | Coil temperature sensor      | 17  | AC power NIN     |
| 5   | Ambient temperature sensor   | 18  | GND              |
| 6   | Discharge temperature sensor | 19  | Reactor L2       |
| 7   | Overheat protector           | 20  | Reactor L1       |
| 8   | Electronic expansion valve   | 21  | Rectifier bridge |
| 9   | High pressure                | 22  | IGBT             |
| 10  | SW                           | 23  | Diode            |
| 11  | Computer/Checker             | 24  | IPM              |
| 12  | 4-way valve                  | 25  | Radiator         |
| 13  | Electric heating belt        |     |                  |

### Figure 22: 7-segment display board - HMH72B24/HMH72B36

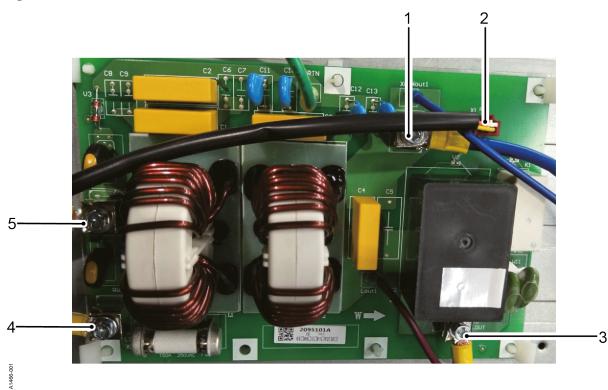



| No. | Description                     | No. | Description                               |
|-----|---------------------------------|-----|-------------------------------------------|
| 1   | Switch to outdoor control board | 5   | S1- Select button                         |
| 2   | 7-segment display               | 6   | DIP switch                                |
| 3   | S3 - Decrease button            | 7   | Program                                   |
| 4   | S2 - Increase button            | 8   | Computer/Checker to outdoor control board |

### Figure 23: Main control board - HMH72B48/HMH72B60



| No. | Description                     | No. | Description           |
|-----|---------------------------------|-----|-----------------------|
| 1   | DC fan Driver1                  | 11  | Checker               |
| 2   | DC fan Driver2                  | 12  | EEPROM                |
| 3   | IPM-SI                          | 13  | PTC control signal    |
| 4   | Defrost/Coil temperature sensor | 14  | H signal              |
| 5   | Pressure sensor                 | 15  | Communication signal  |
| 6   | Discharge temperature sensor    | 16  | Electric heating belt |
| 7   | Ambient temperature sensor      | 17  | Electric heating belt |
| 8   | High pressure switch            | 18  | 4-way valve           |
| 9   | Low pressure switch             | 19  | Base heater           |
| 10  | Electronic expansion valve      | 20  | AC power              |


### Figure 24: Drive board



A1465-001

| No. | Description   | No. | Description  |
|-----|---------------|-----|--------------|
| 1   | DC fan signal | 7   | Reactor L2   |
| 2   | IPM-SI        | 8   | Compressor W |
| 3   | EE            | 9   | Compressor U |
| 4   | NIN           | 10  | Compressor V |
| 5   | LIN           | 11  | Driver       |
| 6   | Reactor L1    |     |              |

#### Figure 25: Filter board



| No. Description |                    | No. | Description |
|-----------------|--------------------|-----|-------------|
| 1               | N out              | 4   | LIN         |
| 2               | PTC control signal | 5   | NIN         |
| 3               | Lout               |     |             |

# Field settings

#### Setting the DIP switch of the outdoor unit

- 1. Turn off all power sources before setting the switches to ensure settings are refreshed and valid.
- 2. Set switches according to the required setting as shown in Figure 26.
- () Note: Dip switch setting is optional.

#### Figure 26: DIP switch setting

24k/36k

| S4 Dip switch setting |     | S5 Dip switch setting      |                   |  |
|-----------------------|-----|----------------------------|-------------------|--|
| Factory setting       |     | Factory setting            | 0N<br>CHT 1 2 3 4 |  |
| Pump down<br>switch   | OFF | Smart energy<br>management |                   |  |
| Forced<br>defrost     |     | Cooling<br>only            | ON<br>OFF         |  |

48k/60k

| S1 Dip switch setting |                   | S2 Dip switch setting   |                   |          |
|-----------------------|-------------------|-------------------------|-------------------|----------|
| select setting        |                   | select setting          |                   |          |
| Factory setting       | 08<br>0FF 1 2 3 4 | Factory setting         | 08<br>0FF 1 2 3 4 |          |
| Forced defrost        |                   | Refrigerant<br>recovery |                   | 1467-001 |
|                       |                   |                         |                   | I≪       |

#### Activating manual defrost mode

- 1. Change the switch from **OFF** to **ON** before applying power to the unit.
- 2. Set the room thermostat to heating mode, which then operates the unit in manual defrosting mode.

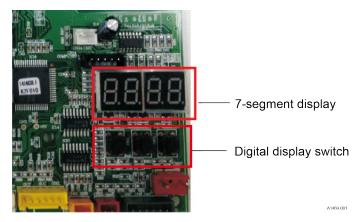
#### Activating pump down mode

The compressor runs with a target frequency and without any protection when the frequency rises. The EEV runs with an open setting. The outdoor unit fan runs with the set fan speed.

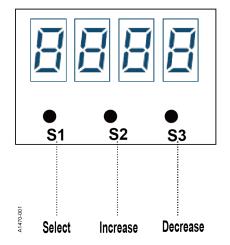
- 1. Remove line voltage power from the outdoor section.
- 2. Close the liquid line service valve using a hex head wrench by turning the valve stem fully clockwise until seated as shown in Figure 27.

#### Figure 27: Refrigerant collection




- 3. Open the maintenance panel.
- 4. Place the unit in pump-down mode by changing the dip switch setting on the main control board as shown in Figure 26.
- 5. Restore line voltage power to the outdoor section.
- 6. Note that the LED display on the main control board should display 40. This number then counts down to zero.
- When the LED begins to blink zero, close the vapor line service valve using a hex head wrench by turning the valve stem fully clockwise until seated as shown in Figure 27.
- 8. Remove line voltage power from the outdoor section.
- () Note: Make sure to switch back the dip switch setting after the refrigerant recovery operation. If not, the unit enters the refrigerant recovery mode again after powering on.




The refrigerant in systems with linesets in excess of 40 ft cannot be recovered into the outdoor unit and requires recovery with external equipment.

## Running a parameter query

#### Figure 28: 7-segment display query



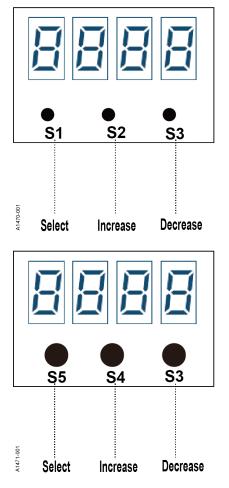
# Figure 29: HMH72B24 and HMH72B36 digital display board parameters



There are three buttons on the digital display board:

- **Select**: Press to display outdoor or indoor unit parameter. P.= The parameter of the outdoor unit.
- **Increase**: Press to increase the number by one.
- Decrease: Press to decrease the number by one.
- (i) Note: The parameter content is automatically displayed after the parameter code is selected for 3 s.

#### Table 19: Parameters - HMH72B24 and HMH72B36


| Parameter code | Description                         |
|----------------|-------------------------------------|
| P.0            | Fault codes                         |
| P.1            | Compressor actual<br>frequency      |
| P.2            | Compressor driving<br>frequency     |
| P.4            | Compressor target<br>frequency      |
| P.5            | Compressor discharge<br>temperature |

42 Service Data Application Guide: H Series - 17 SEER Horizontal Discharge Modulating Heat Pump

#### Table 19: Parameters - HMH72B24 and HMH72B36

| Parameter code | Description                    |
|----------------|--------------------------------|
| P.6            | Outdoor suction temperature    |
| P.7            | Outdoor ambient<br>temperature |
| P.8            | Outdoor coil temperature       |
| P.9            | Outdoor defrosting temperature |
| P.10           | IPM module temperature         |
| P.11           | Outdoor capacity requirement   |
| P.13           | Outdoor DC motor target speed  |
| P.14           | AC input current               |
| P.15           | AC input voltage               |
| P.16           | DC bus voltage                 |
| P.17           | Compressor phase current       |
| P.18           | Frequency limit code           |

# Figure 30: HMH72B48 and HMH72B60 digital display board parameters



There are three buttons on the digital display board:

- **Select**: Press to display outdoor or indoor unit parameter. P./H.= The parameter of the outdoor unit.
- **Increase**: Press to increase the number by one. Hold down to increase rapidly.
- **Decrease**: Press to decrease the number by one. Hold down to decrease rapidly.

Table 20: Parameters - HMH72B48 and HMH72B60

| Parameter code | Description                                 |
|----------------|---------------------------------------------|
| 0              | Protection code or fault code               |
| P.1            | Compressor actual frequency                 |
| P.2            | Compressor driving frequency                |
| P.4            | Outdoor EEV opening                         |
| P.5            | Outdoor EEV target opening                  |
| P.6            | Upper DC motor revolving speed              |
| P.8            | AC input voltage                            |
| P.9            | AC input current                            |
| P.10           | IPM module temperature                      |
| P.11           | Outdoor capacity requirement                |
| P.12           | IPM module fault                            |
| P.20           | Outdoor ambient temperature                 |
| P.21           | Outdoor coil temperature                    |
| P.22           | Outdoor defrost<br>temperature              |
| P.23           | Suction temperature                         |
| P.24           | Discharge temperature                       |
| H.1            | DSH actual value                            |
| H.2            | DSH target value                            |
| Н.3            | Target pressure in cooling mode             |
| Н.4            | Target pressure in heating mode)            |
| Н.5            | Actual pressure (= the displayed value/100) |

# Control mode

Control function

1. **Cooling anti-freeze protection:** The outdoor pressure sensors monitor evaporator pressure and saturated temperature. This feature prevents the indoor unit evaporator temperature from becoming too low. If the indoor coil temperature is too low, the compressor automatically engages protection mode.

- 2. **Overload protection:** To prevent system overload caused by excessive pressure, the control implements real-time detection when the outdoor coil temperature is too high during cooling mode or the indoor coil temperature is too high during heating mode.
- 3. **Compressor discharge temperature protection:** To prevent damage due to a high compressor discharge temperature, the control monitors the discharge gas temperature and provides automatic protection if the temperature is too high.
- 4. **Oil-return control:** When the compressor runs at low frequencies for a long time, the control initiates an oil-return sequence to ensure oil is returned to the compressor.
- 5. **Operation mode:** Air conditioning mode is the operation mode set by users through the thermostat. Two modes are available: cooling and heating.
- 6. **Four-way valve control:** The four-way valve of the outdoor unit is de-energized in cooling and defrosting, and energized in heating. During heating, the four-way valve is de-energized for a period of time after the compressor stops.
- 7. **Start-up protection:** To prevent frequent compressor starts where the system pressure has not equalized, the control invokes a delay of 3 min between cycles to prevent short cycles.
- 8. **Pressure protection:** When the pressure increases to a preset value, the pressure switch automatically changes to protection mode. The compressor stops and reports the protection fault code.

#### Sensor parameter

These are the parameters for the outdoor compressor discharge sensor:

(R0=187.25K±6.3%, R100=3.77K±2.5K, B0/100=3979K±1%)

#### Table 21: Outdoor compressor discharge temperature sensor

| Temperature [°F (°C)] | Rmin [ KΩ ] | Rnom [ KΩ ] | Rmax [ KΩ ] | Dev(MIN)% | Dev(MAX)% |
|-----------------------|-------------|-------------|-------------|-----------|-----------|
| -22.0 (-30)           | 908.2603    | 985.5274    | 1065.1210   | -7.84     | 7.47      |
| -20.2 (-29)           | 855.3955    | 927.6043    | 1001.9150   | -7.78     | 7.42      |
| -18.4 (-28)           | 805.9244    | 873.4324    | 924.8368    | -7.73     | 5.56      |
| -16.6 (-27)           | 759.6097    | 822.7471    | 887.5944    | -7.67     | 7.31      |
| -14.8 (-26)           | 716.2320    | 775.3041    | 835.9165    | -7.62     | 7.25      |
| -13.0 (-25)           | 675.5881    | 730.8775    | 787.5529    | -7.56     | 7.20      |
| -11.2 (-24)           | 637.4902    | 689.2583    | 742.2720    | -7.51     | 7.14      |
| -9.4 (-23)            | 601.7645    | 650.2533    | 699.8601    | -7.46     | 7.09      |
| -7.6 (-22)            | 568.2499    | 613.6835    | 660.1191    | -7.40     | 7.03      |
| -5.8 (-21)            | 536.7970    | 579.3832    | 622.8658    | -7.35     | 6.98      |
| -4.0 (-20)            | 507.2676    | 547.1989    | 587.9307    | -7.30     | 6.93      |
| -2.2 (-19)            | 497.5332    | 516.9882    | 555.1565    | -3.76     | 6.88      |
| -0.4 (-18)            | 453.4748    | 488.6192    | 524.3977    | -7.19     | 6.82      |
| 1.4 (-17)             | 428.9819    | 461.9693    | 495.5191    | -7.14     | 6.77      |
| 3.2 (-16)             | 405.9517    | 436.9251    | 486.3954    | -7.09     | 10.17     |
| 5.0 (-15)             | 384.2888    | 413.3808    | 442.9105    | -7.04     | 6.67      |
| 6.8 (-14)             | 363.9047    | 391.2386    | 418.9563    | -6.99     | 6.62      |
| 8.6 (-13)             | 344.7169    | 370.4072    | 396.4325    | -6.94     | 6.56      |
| 10.4 (-12)            | 326.6497    | 350.8019    | 375.2461    | -6.88     | 6.51      |
| 12.2 (-11)            | 309.6286    | 332.3441    | 355.3104    | -6.83     | 6.46      |
| 14.0 (-10)            | 293.5903    | 314.9620    | 336.5448    | -6.79     | 6.41      |
| 15.8 (-9)             | 278.4719    | 298.5822    | 318.3744    | -6.74     | 6.22      |
| 17.6 (-8)             | 264.2156    | 283.1464    | 302.2294    | -6.69     | 6.31      |
| 19.4 (-7)             | 250.7678    | 268.5936    | 286.5448    | -6.64     | 6.26      |
| 21.2 (-6)             | 238.0783    | 254.8686    | 271.7603    | -6.59     | 6.22      |
| 23.0 (-5)             | 226.1003    | 241.9200    | 257.8193    | -6.54     | 6.17      |
| 24.8 (-4)             | 214.7903    | 229.6997    | 244.6593    | -6.49     | 6.11      |

44 Service Data Application Guide: H Series - 17 SEER Horizontal Discharge Modulating Heat Pump

| Temperature [°F (°C)] | Rmin [ KΩ ] | Rnom [ KΩ ] | Rmax [ KΩ ] | Dev(MIN)% | Dev(MAX)% |
|-----------------------|-------------|-------------|-------------|-----------|-----------|
| 26.6 (-3)             | 204.1073    | 218.1630    | 232.2612    | -6.44     | 6.07      |
| 28.4 (-2)             | 194.0135    | 207.2681    | 220.5495    | -6.39     | 6.02      |
| 30.2 (-1)             | 184.4732    | 196.9759    | 209.4913    | -6.35     | 5.97      |
| 32.0 (0)              | 175.4533    | 187.2500    | 199.0468    | -6.30     | 5.93      |
| 33.8 (1)              | 166.8952    | 178.0255    | 189.1529    | -6.25     | 5.88      |
| 35.6 (2)              | 158.8023    | 169.3067    | 179.8058    | -6.20     | 5.84      |
| 37.4 (3)              | 151.1467    | 161.0633    | 170.9724    | -6.16     | 5.80      |
| 39.2 (4)              | 143.9026    | 153.2667    | 162.6216    | -6.11     | 5.75      |
| 41.0 (5)              | 137.0455    | 145.8905    | 154.7246    | -6.06     | 5.71      |
| 42.8 (6)              | 130.5528    | 138.9097    | 147.2544    | -6.02     | 5.67      |
| 44.6 (7)              | 124.4033    | 132.3011    | 140.1856    | -5.97     | 5.62      |
| 46.4 (8)              | 118.5769    | 126.0429    | 133.4946    | -5.92     | 5.58      |
| 48.2 (9)              | 113.0550    | 120.1146    | 127.1591    | -5.88     | 5.54      |
| 50.0 (10)             | 107.8202    | 114.4973    | 121.1586    | -5.83     | 5.50      |
| 51.8 (11)             | 102.8560    | 109.1728    | 115.4734    | -5.79     | 5.46      |
| 53.6 (12)             | 98.1470     | 104.1246    | 110.0855    | -5.74     | 5.41      |
| 55.4 (13)             | 93.6787     | 99.3367     | 104.9778    | -5.70     | 5.37      |
| 57.2 (14)             | 89.4378     | 94.7946     | 100.1342    | -5.65     | 5.33      |
| 59.0 (15)             | 85.4114     | 90.4842     | 95.5398     | -5.61     | 5.29      |
| 60.8 (16)             | 81.5875     | 86.3926     | 91.1805     | -5.56     | 5.25      |
| 62.6 (17)             | 77.9551     | 82.5076     | 87.0430     | -5.52     | 5.21      |
| 64.4 (18)             | 74.5034     | 78.8177     | 83.1150     | -5.47     | 5.17      |
| 66.2 (19)             | 71.2227     | 75.3122     | 79.3848     | -5.43     | 5.13      |
| 68.0 (20)             | 68.1036     | 71.9808     | 75.8414     | -5.39     | 5.09      |
| 69.8 (21)             | 65.1373     | 68.8141     | 72.4746     | -5.34     | 5.05      |
| 71.6 (22)             | 62.3155     | 65.8032     | 69.2746     | -5.30     | 5.01      |
| 73.4 (23)             | 59.6306     | 62.9395     | 66.2324     | -5.26     | 4.97      |
| 75.2 (24)             | 57.0752     | 60.2152     | 63.3395     | -5.21     | 4.93      |
| 77.0 (25)             | 54.6424     | 57.6227     | 60.5877     | -5.17     | 4.89      |
| 78.8 (26)             | 52.3258     | 55.1551     | 57.9695     | -5.13     | 4.85      |
| 80.6 (27)             | 50.1192     | 52.8058     | 55.4778     | -5.09     | 4.82      |
| 82.4 (28)             | 48.0168     | 50.5684     | 53.1058     | -5.05     | 4.78      |
| 84.2 (29)             | 46.0133     | 48.4371     | 50.8472     | -5.00     | 4.74      |
| 86.0 (30)             | 44.1034     | 46.4046     | 48.6960     | -4.96     | 4.71      |
| 87.8 (31)             | 42.2825     | 44.4711     | 46.6466     | -4.92     | 4.66      |
| 89.6 (32)             | 40.5458     | 42.6261     | 44.6937     | -4.88     | 4.63      |
| 91.4 (33)             | 38.8891     | 40.8668     | 42.8323     | -4.84     | 4.59      |
| 93.2 (34)             | 37.3084     | 39.1890     | 41.0576     | -4.80     | 4.55      |
| 95.0 (35)             | 35.7998     | 37.5883     | 39.3653     | -4.76     | 4.51      |
| 96.8 (36)             | 34.3596     | 36.0609     | 37.7511     | -4.72     | 4.48      |
| 98.6 (37)             | 32.9844     | 34.6030     | 36.2109     | -4.68     | 4.44      |
| 100.4 (38)            | 31.6710     | 33.2113     | 34.7412     | -4.64     | 4.40      |

| Temperature [°F (°C)] | Rmin [ KΩ ] | Rnom [ KΩ ] | Rmax [ KΩ ] | Dev(MIN)% | Dev(MAX)% |
|-----------------------|-------------|-------------|-------------|-----------|-----------|
| 102.2 (39)            | 30.4164     | 31.8823     | 33.3383     | -4.60     | 4.37      |
| 104.0 (40)            | 29.2176     | 30.6130     | 31.9988     | -4.56     | 4.33      |
| 105.8 (41)            | 28.0718     | 29.4004     | 30.7197     | -4.52     | 4.29      |
| 107.6 (42)            | 26.9765     | 28.2417     | 29.4979     | -4.48     | 4.26      |
| 109.4 (43)            | 25.9293     | 27.1342     | 28.3306     | -4.44     | 4.22      |
| 111.2 (44)            | 24.9277     | 26.0755     | 27.2150     | -4.40     | 4.19      |
| 113.0 (45)            | 23.9697     | 25.0632     | 26.1488     | -4.36     | 4.15      |
| 114.8 (46)            | 23.0530     | 24.0950     | 25.1293     | -4.32     | 4.12      |
| 116.6 (47)            | 22.1757     | 23.1688     | 24.1545     | -4.29     | 4.08      |
| 118.4 (48)            | 21.3360     | 22.2826     | 23.2221     | -4.25     | 4.05      |
| 120.2 (49)            | 20.5321     | 21.4345     | 22.3301     | -4.21     | 4.01      |
| 122.0 (50)            | 19.7623     | 20.6226     | 21.4766     | -4.17     | 3.98      |
| 123.8 (51)            | 19.0261     | 19.8468     | 20.6612     | -4.14     | 3.94      |
| 125.6 (52)            | 18.3211     | 19.1040     | 19.8808     | -4.10     | 3.91      |
| 127.4 (53)            | 17.6458     | 18.3926     | 19.1338     | -4.06     | 3.87      |
| 129.2 (54)            | 16.9986     | 17.7113     | 18.4185     | -4.02     | 3.84      |
| 131.0 (55)            | 16.3784     | 17.0537     | 17.7335     | -3.96     | 3.83      |
| 132.8 (56)            | 15.7839     | 16.4332     | 17.0774     | -3.95     | 3.77      |
| 134.6 (57)            | 15.2139     | 15.8338     | 16.4488     | -3.92     | 3.74      |
| 136.4 (58)            | 14.6673     | 15.2592     | 15.8464     | -3.88     | 3.71      |
| 138.2 (59)            | 14.1430     | 14.7083     | 15.2690     | -3.84     | 3.67      |
| 40.0 (60)             | 13.6400     | 14.1799     | 14.7154     | -3.81     | 3.64      |
| 141.8 (61)            | 13.1573     | 13.6730     | 14.1846     | -3.77     | 3.61      |
| 143.6 (62)            | 12.6941     | 13.1868     | 13.6756     | -3.74     | 3.57      |
| 145.4 (63)            | 12.2494     | 12.7202     | 13.1872     | -3.70     | 3.54      |
| 147.2 (64)            | 11.8224     | 12.2723     | 12.7186     | -3.67     | 3.51      |
| 149.0 (65)            | 11.4124     | 11.8424     | 12.2690     | -3.63     | 3.48      |
| 150.8 (66)            | 11.0185     | 11.4295     | 11.8373     | -3.60     | 3.45      |
| 152.6 (67)            | 10.6401     | 11.0331     | 11.4230     | -3.56     | 3.41      |
| 154.4 (68)            | 10.2765     | 10.6522     | 11.0251     | -3.53     | 3.38      |
| 156.2 (69)            | 9.9271      | 10.2863     | 10.6429     | -3.49     | 3.35      |
| 158.0 (70)            | 9.5912      | 9.9348      | 10.2756     | -3.46     | 3.32      |
| 159.8 (71)            | 9.2682      | 9.5968      | 9.9231      | -3.42     | 3.29      |
| 161.6 (72)            | 8.9576      | 9.2720      | 9.5841      | -3.39     | 3.26      |
| 163.4 (73)            | 8.6589      | 8.9597      | 9.2583      | -3.36     | 3.23      |
| 32.9844               | 8.3716      | 8.6594      | 8.9451      | -3.32     | 3.19      |
| 167.0 (75)            | 8.0951      | 8.3705      | 8.6440      | -3.29     | 3.16      |
| 168.8 (76)            | 7.8290      | 8.0926      | 8.3544      | -3.26     | 3.13      |
| 170.6 (77)            | 7.5730      | 7.8252      | 8.0758      | -3.22     | 3.10      |
| 172.4 (78)            | 7.3264      | 7.5679      | 7.8078      | -3.19     | 3.07      |
| 174.2 (79)            | 7.0891      | 7.3202      | 7.5499      | -3.16     | 3.04      |
| 176.0 (80)            | 6.8605      | 7.0818      | 7.3018      | -3.12     | 3.01      |

| Temperature [°F (°C)] | Rmin [ KΩ ] | Rnom [ KΩ ] | Rmax [ KΩ ] | Dev(MIN)% | Dev(MAX)% |
|-----------------------|-------------|-------------|-------------|-----------|-----------|
| 177.8 (81)            | 6.6403      | 6.8522      | 7.0629      | -3.09     | 2.98      |
| 179.6 (82)            | 6.4282      | 6.6311      | 6.8329      | -3.06     | 2.95      |
| 181.4 (83)            | 6.2239      | 6.4182      | 6.6115      | -3.03     | 2.92      |
| 183.2 (84)            | 6.0269      | 6.2131      | 6.3982      | -3.00     | 2.89      |
| 185.0 (85)            | 5.8371      | 6.0154      | 6.1928      | -2.96     | 2.86      |
| 186.8 (86)            | 5.6542      | 5.8249      | 5.9949      | -2.93     | 2.84      |
| 188.6 (87)            | 5.4777      | 5.6413      | 5.8042      | -2.90     | 2.81      |
| 190.4 (88)            | 5.3076      | 5.4644      | 5.6205      | -2.87     | 2.78      |
| 192.2 (89)            | 5.1435      | 5.2937      | 5.4433      | -2.84     | 2.75      |
| 194.0 (90)            | 4.9853      | 5.1292      | 5.2726      | -2.81     | 2.72      |
| 195.8 (91)            | 4.8326      | 4.9705      | 5.1079      | -2.77     | 2.69      |
| 197.6 (92)            | 4.6852      | 4.8174      | 4.9492      | -2.74     | 2.66      |
| 199.4 (93)            | 4.5430      | 4.6697      | 4.7960      | -2.71     | 2.63      |
| 201.2 (94)            | 4.4058      | 4.5272      | 4.6483      | -2.68     | 2.61      |
| 203.0 (95)            | 4.2733      | 4.3896      | 4.5058      | -2.65     | 2.58      |
| 204.8 (96)            | 4.1453      | 4.2568      | 4.3683      | -2.62     | 2.55      |
| 206.6 (97)            | 4.0218      | 4.1287      | 4.2355      | -2.59     | 2.52      |
| 208.4 (98)            | 3.9024      | 4.0049      | 4.1074      | -2.56     | 2.50      |
| 210.2 (99)            | 3.7872      | 3.8854      | 3.9837      | -2.53     | 2.47      |
| 212.0 (100)           | 3.6758      | 3.7700      | 3.8643      | -2.50     | 2.44      |
| 213.8 (101)           | 3.5661      | 3.6585      | 3.7512      | -2.53     | 2.47      |
| 215.6 (102)           | 3.4601      | 3.5509      | 3.6419      | -2.56     | 2.50      |
| 217.4 (103)           | 3.3577      | 3.4468      | 3.5362      | -2.59     | 2.53      |
| 219.2 (104)           | 3.2588      | 3.3463      | 3.4341      | -2.61     | 2.56      |
| 221.0 (105)           | 3.1632      | 3.2491      | 3.3353      | -2.64     | 2.58      |
| 222.8 (106)           | 3.0708      | 3.1551      | 3.2398      | -2.67     | 2.61      |
| 224.6 (107)           | 2.9816      | 3.0643      | 3.1475      | -2.70     | 2.64      |
| 226.4 (108)           | 2.8953      | 2.9765      | 3.0582      | -2.73     | 2.67      |
| 228.2 (109)           | 2.8118      | 2.8915      | 2.9717      | -2.76     | 2.70      |
| 230.0 (110)           | 2.7311      | 2.8093      | 2.8881      | -2.78     | 2.73      |
| 231.8 (111)           | 2.6531      | 2.7299      | 2.8072      | -2.81     | 2.75      |
| 233.6 (112)           | 2.5776      | 2.6530      | 2.7289      | -2.84     | 2.78      |
| 235.4 (113)           | 2.5046      | 2.5785      | 2.6531      | -2.87     | 2.81      |
| 237.2 (114)           | 2.4340      | 2.5065      | 2.5798      | -2.89     | 2.84      |
| 239.0 (115)           | 2.3656      | 2.4368      | 2.5087      | -2.92     | 2.87      |
| 240.8 (116)           | 2.2995      | 2.3693      | 2.4400      | -2.95     | 2.90      |
| 242.6 (117)           | 2.2354      | 2.3040      | 2.3733      | -2.98     | 2.92      |
| 244.4 (118)           | 2.1734      | 2.2407      | 2.3088      | -3.00     | 2.95      |
| 246.2 (119)           | 2.1134      | 2.1795      | 2.2463      | -3.03     | 2.97      |
| 248.0 (120)           | 2.0553      | 2.1201      | 2.1858      | -3.06     | 3.01      |
| 249.8 (121)           | 1.9991      | 2.0626      | 2.1271      | -3.08     | 3.03      |
| 251.6 (122)           | 1.9446      | 2.0070      | 2.0702      | -3.11     | 3.05      |

| Temperature [°F (°C)] | Rmin [ KΩ ] | Rnom [ KΩ ] | Rmax [ KΩ ] | Dev(MIN)% | Dev(MAX)% |
|-----------------------|-------------|-------------|-------------|-----------|-----------|
| 253.4 (123)           | 1.8918      | 1.9530      | 2.0151      | -3.13     | 3.08      |
| 255.2 (124)           | 1.8406      | 1.9007      | 1.9617      | -3.16     | 3.11      |
| 257.0 (125)           | 1.7911      | 1.8500      | 1.9099      | -3.18     | 3.14      |
| 258.8 (126)           | 1.7430      | 1.8009      | 1.8597      | -3.22     | 3.16      |
| 260.6 (127)           | 1.6965      | 1.7533      | 1.8110      | -3.24     | 3.19      |
| 262.4 (128)           | 1.6514      | 1.7071      | 1.7638      | -3.26     | 3.21      |
| 264.2 (129)           | 1.6076      | 1.6623      | 1.7180      | -3.29     | 3.24      |
| 266.0 (130)           | 1.5652      | 1.6189      | 1.6736      | -3.32     | 3.27      |

These are the parameters for the suction, ambient, coil, and discharge sensors: (R0=15K±2%, B0/100=3450K±2%) **Table 22: Suction, ambient, coil, and discharge sensors** 

| Temperature [°F (°C)] | Rmin [ KΩ ] | Rnom [ KΩ ] | Rmax [ KΩ ] | Dev(MIN)% | Dev(MAX)% |
|-----------------------|-------------|-------------|-------------|-----------|-----------|
| -22.0 (-30)           | 60.78       | 64.77       | 68.99       | -6.16     | 6.12      |
| -20.2 (-29)           | 57.75       | 61.36       | 65.16       | -5.88     | 5.83      |
| -18.4 (-28)           | 54.89       | 58.15       | 61.58       | -5.61     | 5.57      |
| -16.6 (-27)           | 52.19       | 55.14       | 58.23       | -5.35     | 5.31      |
| -14.8 (-26)           | 49.63       | 52.30       | 55.08       | -5.11     | 5.05      |
| -13.0 (-25)           | 47.21       | 49.62       | 52.13       | -4.86     | 4.81      |
| -11.2 (-24)           | 44.92       | 47.10       | 49.37       | -4.63     | 4.60      |
| -9.4 (-23)            | 42.76       | 44.73       | 46.78       | -4.40     | 4.38      |
| -7.6 (-22)            | 40.71       | 42.49       | 44.34       | -4.19     | 4.17      |
| -5.8 (-21)            | 38.77       | 40.38       | 42.05       | -3.99     | 3.97      |
| -4.0 (-20)            | 36.93       | 38.39       | 39.90       | -3.80     | 3.78      |
| -2.2 (-19)            | 35.18       | 36.51       | 37.87       | -3.64     | 3.59      |
| -0.4 (-18)            | 33.53       | 34.74       | 35.97       | -3.48     | 3.42      |
| 1.4 (-17)             | 31.96       | 33.06       | 34.17       | -3.33     | 3.25      |
| 3.2 (-16)             | 30.48       | 31.47       | 32.49       | -3.15     | 3.14      |
| 5.0 (-15)             | 29.07       | 29.97       | 30.89       | -3.00     | 2.98      |
| 6.8 (-14)             | 27.73       | 28.56       | 29.39       | -2.91     | 2.82      |
| 8.6 (-13)             | 26.46       | 27.22       | 27.98       | -2.79     | 2.72      |
| 10.4 (-12)            | 25.26       | 25.95       | 26.64       | -2.66     | 2.59      |
| 12.2 (-11)            | 24.11       | 24.75       | 25.38       | -2.59     | 2.48      |
| 14.0 (-10)            | 23.03       | 23.61       | 24.19       | -2.46     | 2.40      |
| 15.8 (-9)             | 21.99       | 22.53       | 23.06       | -2.40     | 2.30      |
| 17.6 (-8)             | 21.01       | 21.51       | 22.00       | -2.32     | 2.23      |
| 19.4 (-7)             | 20.08       | 20.54       | 20.99       | -2.24     | 2.14      |
| 21.2 (-6)             | 19.19       | 19.62       | 20.04       | -2.19     | 2.10      |
| 23.0 (-5)             | 18.35       | 18.74       | 19.14       | -2.08     | 2.09      |
| 24.8 (-4)             | 17.55       | 17.92       | 18.29       | -2.06     | 2.02      |
| 26.6 (-3)             | 16.78       | 17.13       | 17.48       | -2.04     | 2.00      |
| 28.4 (-2)             | 16.06       | 16.38       | 16.71       | -1.95     | 1.97      |
| 30.2 (-1)             | 15.36       | 15.67       | 15.98       | -1.98     | 1.94      |

48 Service Data Application Guide: H Series - 17 SEER Horizontal Discharge Modulating Heat Pump

#### Table 22: Suction, ambient, coil, and discharge sensors

| Temperature [°F (°C)] | Rmin [ KΩ ] | Rnom [ KΩ ] | Rmax [ KΩ ] | Dev(MIN)% | Dev(MAX)% |
|-----------------------|-------------|-------------|-------------|-----------|-----------|
| 32.0 (0)              | 14.70       | 15.00       | 15.29       | -2.00     | 1.90      |
| 33.8 (1)              | 14.08       | 14.36       | 14.64       | -1.95     | 1.91      |
| 35.6 (2)              | 13.48       | 13.75       | 14.02       | -1.96     | 1.93      |
| 37.4 (3)              | 12.91       | 13.17       | 13.43       | -1.97     | 1.94      |
| 39.2 (4)              | 12.36       | 12.62       | 12.87       | -2.06     | 1.94      |
| 41.0 (5)              | 11.85       | 12.09       | 12.34       | -1.99     | 2.03      |
| 42.8 (6)              | 11.35       | 11.59       | 11.83       | -2.07     | 2.03      |
| 44.6 (7)              | 10.88       | 11.11       | 11.35       | -2.07     | 2.11      |
| 46.4 (8)              | 10.43       | 10.66       | 10.89       | -2.16     | 2.11      |
| 48.2 (9)              | 9.999       | 10.230      | 10.450      | -2.26     | 2.11      |
| 50.0 (10)             | 9.590       | 9.816       | 10.040      | -2.30     | 2.23      |
| 51.8 (11)             | 9.199       | 9.422       | 9.647       | -2.37     | 2.33      |
| 53.6 (12)             | 8.826       | 9.047       | 9.269       | -2.44     | 2.40      |
| 55.4 (13)             | 8.470       | 8.689       | 8.910       | -2.52     | 2.48      |
| 57.2 (14)             | 8.129       | 8.347       | 8.567       | -2.61     | 2.57      |
| 59.0 (15)             | 7.804       | 8.021       | 8.240       | -2.71     | 2.66      |
| 60.8 (16)             | 7.493       | 7.709       | 7.928       | -2.80     | 2.76      |
| 62.6 (17)             | 7.196       | 7.412       | 7.630       | -2.91     | 2.86      |
| 64.4 (18)             | 6.912       | 7.127       | 7.346       | -3.02     | 2.98      |
| 66.2 (19)             | 6.640       | 6.855       | 7.074       | -3.14     | 3.10      |
| 68.0 (20)             | 6.381       | 6.595       | 6.815       | -3.24     | 3.23      |
| 69.8 (21)             | 6.132       | 6.347       | 6.567       | -3.39     | 3.35      |
| 71.6 (22)             | 5.894       | 6.109       | 6.330       | -3.52     | 3.49      |
| 73.4 (23)             | 5.667       | 5.882       | 6.103       | -3.66     | 3.62      |
| 75.2 (24)             | 5.449       | 5.664       | 5.886       | -3.80     | 3.77      |
| 77.0 (25)             | 5.240       | 5.456       | 5.678       | -3.96     | 3.91      |
| 78.8 (26)             | 5.048       | 5.260       | 5.478       | -4.03     | 3.98      |
| 80.6 (27)             | 4.864       | 5.072       | 5.286       | -4.10     | 4.05      |
| 82.4 (28)             | 4.687       | 4.891       | 5.101       | -4.17     | 4.12      |
| 84.2 (29)             | 4.517       | 4.717       | 4.924       | -4.24     | 4.20      |
| 86.0 (30)             | 4.355       | 4.550       | 4.753       | -4.29     | 4.27      |
| 87.8 (31)             | 4.198       | 4.390       | 4.589       | -4.37     | 4.34      |
| 89.6 (32)             | 4.048       | 4.236       | 4.431       | -4.44     | 4.40      |
| 91.4 (33)             | 3.904       | 4.089       | 4.280       | -4.52     | 4.46      |
| 93.2 (34)             | 3.766       | 3.946       | 4.134       | -4.56     | 4.55      |
| 95.0 (35)             | 3.663       | 3.810       | 3.994       | -3.86     | 4.61      |
| 96.8 (36)             | 3.506       | 3.679       | 3.859       | -4.70     | 4.66      |
| 98.6 (37)             | 3.383       | 3.552       | 3.729       | -4.76     | 4.75      |
| 100.4 (38)            | 3.265       | 3.431       | 3.604       | -4.84     | 4.80      |
| 102.2 (39)            | 3.152       | 3.314       | 3.484       | -4.89     | 4.88      |
| 104.0 (40)            | 3.043       | 3.202       | 3.368       | -4.97     | 4.93      |
| 105.8 (41)            | 2.938       | 3.094       | 3.257       | -5.04     | 5.00      |

#### Table 22: Suction, ambient, coil, and discharge sensors

| Temperature [°F (°C)] | Rmin [ KΩ ] | Rnom [ KΩ ] | Rmax [ KΩ ] | Dev(MIN)% | Dev(MAX)% |
|-----------------------|-------------|-------------|-------------|-----------|-----------|
| 107.6 (42)            | 2.838       | 2.990       | 3.149       | -5.08     | 5.05      |
| 109.4 (43)            | 2.741       | 2.890       | 3.046       | -5.16     | 5.12      |
| 111.2 (44)            | 2.648       | 2.793       | 2.946       | -5.19     | 5.19      |
| 113.0 (45)            | 2.558       | 2.701       | 2.850       | -5.29     | 5.23      |
| 114.8 (46)            | 2.472       | 2.611       | 2.758       | -5.32     | 5.33      |
| 116.6 (47)            | 2.389       | 2.525       | 2.669       | -5.39     | 5.40      |
| 118.4 (48)            | 2.309       | 2.443       | 2.583       | -5.49     | 5.42      |
| 120.2 (49)            | 2.232       | 2.363       | 2.500       | -5.54     | 5.48      |
| 122.0 (50)            | 2.158       | 2.286       | 2.421       | -5.60     | 5.58      |
| 123.8 (51)            | 2.087       | 2.212       | 2.344       | -5.65     | 5.63      |
| 125.6 (52)            | 2.018       | 2.140       | 2.269       | -5.70     | 5.69      |
| 127.4 (53)            | 1.952       | 2.072       | 2.198       | -5.79     | 5.73      |
| 129.2 (54)            | 1.888       | 2.005       | 2.129       | -5.84     | 5.82      |
| 131.0 (55)            | 1.827       | 1.941       | 2.062       | -5.87     | 5.87      |
| 132.8 (56)            | 1.767       | 1.880       | 1.998       | -6.01     | 5.91      |
| 134.6 (57)            | 1.710       | 1.820       | 1.936       | -6.04     | 5.99      |
| 136.4 (58)            | 1.655       | 1.763       | 1.876       | -6.13     | 6.02      |
| 138.2 (59)            | 1.602       | 1.707       | 1.818       | -6.15     | 6.11      |
| 140.0 (60)            | 1.551       | 1.654       | 1.762       | -6.23     | 6.13      |
| 141.8 (61)            | 1.502       | 1.602       | 1.709       | -6.24     | 6.26      |
| 143.6 (62)            | 1.452       | 1.553       | 1.657       | -6.50     | 6.28      |
| 145.4 (63)            | 1.409       | 1.505       | 1.606       | -6.38     | 6.29      |
| 147.2 (64)            | 1.364       | 1.458       | 1.558       | -6.45     | 6.42      |
| 149.0 (65)            | 1.322       | 1.413       | 1.511       | -6.44     | 6.49      |
| 150.8 (66)            | 1.280       | 1.370       | 1.466       | -6.57     | 6.55      |
| 152.6 (67)            | 1.241       | 1.328       | 1.422       | -6.55     | 6.61      |
| 154.4 (68)            | 1.202       | 1.288       | 1.379       | -6.68     | 6.60      |
| 156.2 (69)            | 1.165       | 1.249       | 1.339       | -6.73     | 6.72      |
| 158.0 (70)            | 1.129       | 1.211       | 1.299       | -6.77     | 6.77      |
| 159.8 (71)            | 1.095       | 1.175       | 1.261       | -6.81     | 6.82      |
| 161.6 (72)            | 1.061       | 1.140       | 1.224       | -6.93     | 6.86      |
| 163.4 (73)            | 1.029       | 1.106       | 1.188       | -6.96     | 6.90      |
| 32.9844               | 0.9977      | 1.073       | 1.153       | -7.02     | 6.94      |
| 167.0 (75)            | 0.9676      | 1.041       | 1.120       | -7.05     | 7.05      |
| 168.8 (76)            | 0.9385      | 1.011       | 1.088       | -7.17     | 7.08      |
| 170.6 (77)            | 0.9104      | 0.9810      | 1.056       | -7.20     | 7.10      |
| 172.4 (78)            | 0.8833      | 0.9523      | 1.026       | -7.25     | 7.18      |
| 174.2 (79)            | 0.8570      | 0.9246      | 0.9971      | -7.31     | 7.27      |
| 176.0 (80)            | 0.8316      | 0.8977      | 0.9687      | -7.36     | 7.33      |
| 177.8 (81)            | 0.8071      | 0.8717      | 0.9412      | -7.41     | 7.38      |
| 179.6 (82)            | 0.7834      | 0.8466      | 0.9146      | -7.47     | 7.43      |
| 181.4 (83)            | 0.7604      | 0.8223      | 0.8888      | -7.53     | 7.48      |

#### Table 22: Suction, ambient, coil, and discharge sensors

| Temperature [°F (°C)] | Rmin [ KΩ ] | Rnom [ KΩ ] | Rmax [ KΩ ] | Dev(MIN)% | Dev(MAX)% |
|-----------------------|-------------|-------------|-------------|-----------|-----------|
| 183.2 (84)            | 0.7382      | 0.7987      | 0.8639      | -7.57     | 7.55      |
| 185.0 (85)            | 0.7167      | 0.7759      | 0.8397      | -7.63     | 7.60      |
| 186.8 (86)            | 0.6958      | 0.7537      | 0.8161      | -7.68     | 7.65      |
| 188.6 (87)            | 0.6755      | 0.7322      | 0.7933      | -7.74     | 7.70      |
| 190.4 (88)            | 0.6560      | 0.7114      | 0.7712      | -7.79     | 7.75      |
| 192.2 (89)            | 0.6371      | 0.6913      | 0.7498      | -7.84     | 7.80      |
| 194.0 (90)            | 0.6188      | 0.6718      | 0.7291      | -7.89     | 7.86      |
| 195.8 (91)            | 0.6011      | 0.6530      | 0.7051      | -7.95     | 7.39      |
| 197.6 (92)            | 0.5840      | 0.6348      | 0.6897      | -8.00     | 7.96      |
| 199.4 (93)            | 0.5674      | 0.6171      | 0.6709      | -8.05     | 8.02      |
| 201.2 (94)            | 0.5514      | 0.6000      | 0.6527      | -8.10     | 8.07      |
| 203.0 (95)            | 0.5359      | 0.5835      | 0.6350      | -8.16     | 8.11      |
| 204.8 (96)            | 0.5209      | 0.5675      | 0.6179      | -8.21     | 8.16      |
| 206.6 (97)            | 0.5064      | 0.5519      | 0.6014      | -8.24     | 8.23      |
| 208.4 (98)            | 0.4923      | 0.5369      | 0.5853      | -8.31     | 8.27      |
| 210.2 (99)            | 0.4787      | 0.5224      | 0.5698      | -8.37     | 8.32      |
| 212.0 (100)           | 0.4655      | 0.5083      | 0.5547      | -8.42     | 8.36      |
| 213.8 (101)           | 0.4528      | 0.4946      | 0.5401      | -8.45     | 8.42      |
| 215.6 (102)           | 0.4404      | 0.4814      | 0.5259      | -8.52     | 8.46      |
| 217.4 (103)           | 0.4284      | 0.4685      | 0.5121      | -8.56     | 8.51      |
| 219.2 (104)           | 0.4168      | 0.4561      | 0.4988      | -8.62     | 8.56      |
| 221.0 (105)           | 0.4056      | 0.4440      | 0.4859      | -8.65     | 8.62      |
| 222.8 (106)           | 0.3947      | 0.4323      | 0.4733      | -8.70     | 8.66      |
| 224.6 (107)           | 0.3841      | 0.4210      | 0.4611      | -8.76     | 8.70      |
| 226.4 (108)           | 0.3739      | 0.4100      | 0.4493      | -8.80     | 8.75      |
| 228.2 (109)           | 0.3640      | 0.3993      | 0.4379      | -8.84     | 8.81      |
| 230.0 (110)           | 0.3544      | 0.3890      | 0.4267      | -8.89     | 8.84      |
| 231.8 (111)           | 0.3450      | 0.3789      | 0.4159      | -8.95     | 8.90      |
| 233.6 (112)           | 0.3360      | 0.3692      | 0.4055      | -8.99     | 8.95      |
| 235.4 (113)           | 0.3272      | 0.3597      | 0.3953      | -9.04     | 9.01      |
| 237.2 (114)           | 0.3187      | 0.3505      | 0.3854      | -9.07     | 9.06      |
| 239.0 (115)           | 0.3104      | 0.3416      | 0.3758      | -9.13     | 9.10      |
| 240.8 (116)           | 0.3024      | 0.3330      | 0.3665      | -9.19     | 9.14      |
| 242.6 (117)           | 0.2947      | 0.3246      | 0.3574      | -9.21     | 9.18      |
| 244.4 (118)           | 0.2871      | 0.3164      | 0.3468      | -9.26     | 8.77      |
| 246.2 (119)           | 0.2798      | 0.3085      | 0.3401      | -9.30     | 9.29      |
| 248.0 (120)           | 0.2727      | 0.3008      | 0.33        | -9.34     | 9.34      |

# Troubleshooting

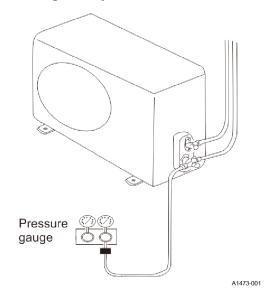
Variable capacity systems can be difficult to troubleshoot considering integrated fault isolation and protection algorithms. When the HP system is not operating within acceptable parameters or there is a need to verify system or component operation, it may be necessary to perform specific system checks. Follow the troubleshooting steps, component checks, and fault code/resolution tables in this section to isolate potential root causes.

## Checking components

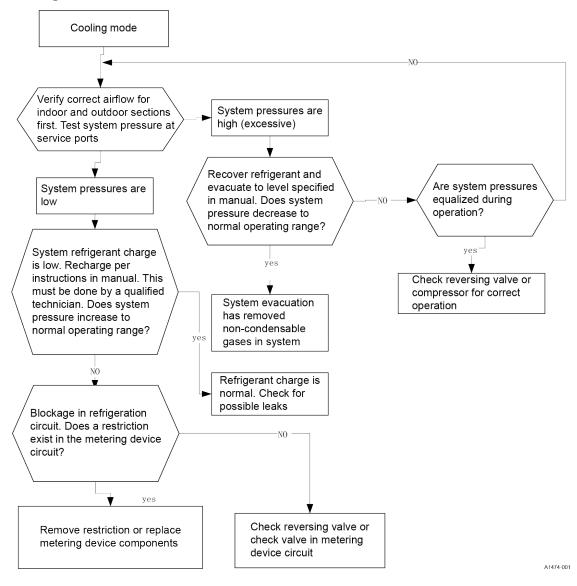
Check the refrigerant system.

#### Test system flow

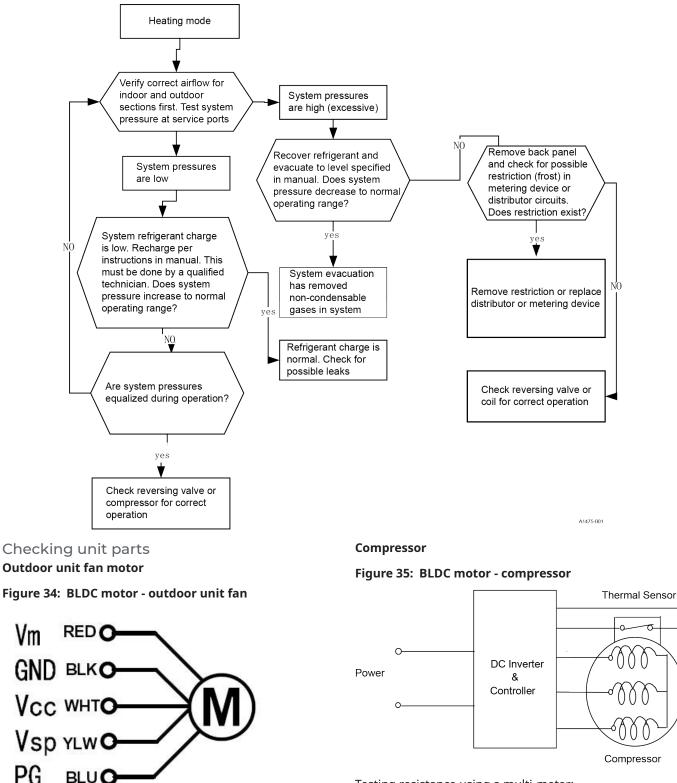
Conditions:


- The compressor is running.
- The outdoor section is installed in a well-ventilated area.

#### Tool


Pressure gauge:

- See: Tube defrost
- Feel: The difference between the tube's temperature
- Test: Test pressure


#### Figure 31: Refrigerant system



#### Figure 32: Cooling mode flow chart



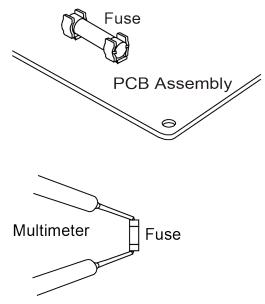
#### Figure 33: Heating mode flow chart



Testing resistance using a multi-meter: Check the resistance of the winding. The compressor motor winding must not be 0  $\Omega$  (shorted). Typical failures:

Compressor motor lock

#### 54 Service Data Application Guide: H Series - 17 SEER Horizontal Discharge Modulating Heat Pump


- Discharge pressure approaches static pressure value
- Compressor motor winding issue
- (i) Note:
  - Do not put the compressor on its side or turn it over.
  - Do not leave the compressor open to air for more than 10 min.
  - Do not allow the compressor to operate in reverse rotation (caused by miswiring).

Do not apply AC voltage to the compressor. It is for use solely with a matched inverter.

#### Fuse

Remove the PCB assembly from the electrical component box and then, pull out the fuse from the PCB assembly. Check for continuity of the fuse with a multimeter as shown in .

#### Figure 36: Fuse continuity check



## Fault codes

# Table 23: Outdoor unit fault codes

| Fault<br>code | Fault description                           | Possible reasons for fault                                                                                                                                                                                                                         | Resolution                                                                                                                                                                                                       | Comments |
|---------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1             | Outdoor ambient<br>temperature sensor fault | <ol> <li>The outdoor ambient<br/>temperature sensor has a<br/>poor connection.</li> <li>The outdoor ambient<br/>temperature sensor has<br/>failed.</li> <li>The sampling circuit has<br/>failed.</li> </ol>                                        | <ol> <li>Reconnect the outdoor<br/>ambient temperature sensor.</li> <li>Replace the outdoor<br/>ambient temperature sensor<br/>components.</li> <li>Replace the outdoor control<br/>board components.</li> </ol> |          |
| 2             | Outdoor coil temperature<br>sensor fault    | <ol> <li>The outdoor coil temperature<br/>sensor has a poor connection.</li> <li>The outdoor coil temperature<br/>sensor has failed.</li> <li>Sensor circuit failure.</li> </ol>                                                                   | <ol> <li>Reconnect the outdoor coil<br/>temperature sensor.</li> <li>Replace the outdoor<br/>coil temperature sensor<br/>components.</li> <li>Replace the outdoor control<br/>board components.</li> </ol>       |          |
| 3             | Unit overcurrent turn-off<br>fault          | <ol> <li>The control board current<br/>sampling circuit has failed.</li> <li>Excessive current due to low<br/>supply voltage.</li> <li>The compressor has failed.</li> <li>Overload in cooling mode.</li> <li>Overload in heating mode.</li> </ol> | <ol> <li>Replace the electrical control<br/>board components.</li> <li>Normal protection.</li> <li>Replace the compressor.</li> <li>See Table 24.</li> <li>See Table 25.</li> </ol>                              |          |

#### Table 23: Outdoor unit fault codes

| Fault<br>code | Fault description                                                                                                                                 | Possible reasons for fault                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Resolution                                                                                                                                                                                                                                                                                                                                                                                                                          | Comments                                                                 |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 4             | EEprom data error                                                                                                                                 | <ol> <li>EE components fails.</li> <li>EE components control circuit<br/>fails.</li> <li>EE components are inserted<br/>incorrectly.</li> </ol>                                                                                                                                                                                                                                                                                                                                                          | <ol> <li>Replace the board.</li> <li>Replace the outdoor control<br/>board components.</li> <li>Reset the EE components.</li> </ol>                                                                                                                                                                                                                                                                                                 |                                                                          |
| 5             | Cooling freezing<br>protection (the indoor coil<br>temperature is too low)<br>or heating overload (the<br>indoor coil temperature is<br>too high) | <ol> <li>Indoor unit airflow restriction.</li> <li>The room temperature is too<br/>low in cooling mode or the<br/>room temperature is too high<br/>in heating mode.</li> <li>The filter is dirty.</li> <li>The duct resistance is too<br/>high resulting in low airflow.</li> <li>The selected indoor fan speed<br/>is too low.</li> <li>The indoor unit is not<br/>installed in accordance with<br/>the installation instructions,<br/>and the air inlet is too close to<br/>the air outlet.</li> </ol> | <ol> <li>Check if the indoor fan,<br/>indoor fan motor, and indoor<br/>coil function normally.</li> <li>Normal protection.</li> <li>Clean the filter.</li> <li>Correct the duct system.</li> <li>Correct the indoor fan speed.</li> <li>Reinstall the indoor unit<br/>referring to the installation<br/>instructions to resolve issues.</li> </ol>                                                                                  |                                                                          |
| 7             | Communication fault<br>between the indoor unit<br>and outdoor unit                                                                                | <ol> <li>The low-voltage cable<br/>is connected incorrectly<br/>between the indoor unit and<br/>the outdoor unit.</li> <li>The low-voltage connection is<br/>loose.</li> <li>The low-voltage cable is<br/>damaged.</li> <li>The outdoor control board<br/>has failed.</li> <li>The low-voltage circuit fuse is<br/>open.</li> <li>The low-voltage cable is<br/>incorrect.</li> </ol>                                                                                                                     | <ol> <li>Reconnect the connection<br/>cable referring to the wiring<br/>diagram.</li> <li>Reconnect the low-voltage<br/>cable.</li> <li>Replace the low-voltage cable.</li> <li>Replace the outdoor control<br/>board.</li> <li>Check the low-voltage circuit,<br/>and adjust the DIP switch and<br/>the short-circuit fuse.</li> <li>Choose suitable low-voltage<br/>cable. Refer to the installation<br/>instructions.</li> </ol> |                                                                          |
| 13            | Compressor overheat<br>protector device                                                                                                           | <ol> <li>The wiring of the overload<br/>protector has a poor<br/>connection.</li> <li>Overload protector failure.</li> <li>Low refrigerant charge.</li> <li>Long lineset length applied<br/>without additional charge.</li> <li>TXV/EEV valve failure.</li> <li>Outdoor control board failure.</li> </ol>                                                                                                                                                                                                | <ol> <li>Reconnect the wiring of the<br/>overload protector.</li> <li>Replace the overload<br/>protector.</li> <li>Check the braze joints for<br/>leaks and recharge the<br/>refrigerant.</li> <li>Add refrigerant.</li> <li>Replace the expansion valve.</li> <li>Replace the outdoor control<br/>board.</li> </ol>                                                                                                                |                                                                          |
| 14            | The high-pressure switch<br>operation or unit is turned<br>off for high-pressure<br>protection                                                    | <ol> <li>The wiring of the high-<br/>pressure switch has a poor<br/>connection.</li> <li>The high-pressure switch has<br/>failed.</li> <li>The outdoor control board is<br/>abnormal.</li> <li>Overload in cooling.</li> <li>Overload in heating.</li> </ol>                                                                                                                                                                                                                                             | <ol> <li>Reconnect the wiring of the<br/>high-pressure switch.</li> <li>Replace the high-pressure<br/>switch.</li> <li>Replace the outdoor control<br/>board.</li> <li>See Table 24.</li> <li>See Table 25.</li> </ol>                                                                                                                                                                                                              | Applies to models<br>with high-pressure<br>switch or pressure<br>sensor. |

#### Table 23: Outdoor unit fault codes

| Fault<br>code | Fault description                                                                             | Possible reasons for fault                                                                                                                                                                                                                                                                     | Resolution                                                                                                                                                                                                                                                                                    | Comments                                                                |
|---------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 15            | The low-pressure switch<br>protection or unit is turned<br>off for low-pressure<br>protection | <ol> <li>The wiring of the low-<br/>pressure switch has a poor<br/>connection.</li> <li>The low-pressure switch has<br/>failed.</li> <li>The refrigerant charge is low.</li> <li>The expansion valve fails in<br/>heating mode.</li> <li>The outdoor control board is<br/>abnormal.</li> </ol> | <ol> <li>Reconnect the wiring of the<br/>low-pressure switch.</li> <li>Replace the low-pressure<br/>switch.</li> <li>Check for a refrigerant leak<br/>and adjust the refrigerant<br/>charge.</li> <li>Replace the expansion valve.</li> <li>Replace the outdoor control<br/>board.</li> </ol> | Applies to models<br>with low-pressure<br>switch or pressure<br>sensor. |
| 16            | Overload protection in<br>cooling mode                                                        | System overload                                                                                                                                                                                                                                                                                | See Table 24.                                                                                                                                                                                                                                                                                 |                                                                         |
| 17            | Discharge temperature<br>sensor fault                                                         | <ol> <li>The wiring of the discharge<br/>temperature sensor has a<br/>poor connection.</li> <li>The discharge temperature<br/>sensor has failed.</li> <li>The sampling circuit is<br/>abnormal.</li> </ol>                                                                                     | <ol> <li>Reconnect the wiring of<br/>the discharge temperature<br/>sensor.</li> <li>Replace the discharge<br/>temperature sensor.</li> <li>Replace the outdoor control<br/>board.</li> </ol>                                                                                                  |                                                                         |
| 18            | AC voltage is abnormal                                                                        | <ol> <li>The AC voltage is &gt;275 V or<br/>&lt;160 V.</li> <li>The AC voltage of the<br/>sampling circuit on the drive<br/>board is abnormal.</li> </ol>                                                                                                                                      | <ol> <li>Normal protection, check the<br/>supply power.</li> <li>Replace the drive board.</li> </ol>                                                                                                                                                                                          |                                                                         |
| 19            | Suction temperature<br>sensor fault                                                           | <ol> <li>The wiring of the suction<br/>temperature sensor has a<br/>poor connection.</li> <li>The suction temperature<br/>sensor has failed.</li> <li>Sensor circuit failure.</li> </ol>                                                                                                       | <ol> <li>Reconnect the suction<br/>pressure sensor wiring.</li> <li>Replace the suction pressure<br/>sensor.</li> <li>Replace the outdoor control<br/>board.</li> </ol>                                                                                                                       |                                                                         |
| 22            | Defrosting sensor fault                                                                       | <ol> <li>The wiring of the defrost<br/>temperature sensor has a<br/>poor connection.</li> <li>The defrost temperature<br/>sensor has failed.</li> <li>Sensor circuit failure.</li> </ol>                                                                                                       | <ol> <li>Reconnect the wiring of the<br/>defrost sensor.</li> <li>Replace the defrost sensor.</li> <li>Replace the outdoor control<br/>board.</li> </ol>                                                                                                                                      |                                                                         |
| 43            | High-pressure sensor fault                                                                    | <ol> <li>The wiring of the high-<br/>pressure sensor has a poor<br/>connection.</li> <li>The high-pressure sensor has<br/>failed.</li> <li>The high-pressure pressure<br/>sensor circuit has failed.</li> </ol>                                                                                | <ol> <li>Reconnect the high-pressure<br/>sensor wiring.</li> <li>Replace the high-pressure<br/>sensor.</li> <li>Replace the outdoor control<br/>board.</li> </ol>                                                                                                                             |                                                                         |
| 45            | IPM fault                                                                                     | Drive or amplifier fault                                                                                                                                                                                                                                                                       | See Table 26 and Table 27 for drive fault codes.                                                                                                                                                                                                                                              |                                                                         |
| 46            | IPM and control board communication fault                                                     | <ol> <li>The cable between the control<br/>board and the drive board has<br/>a poor connection.</li> <li>The cable between the control<br/>board and the drive board has<br/>failed.</li> <li>The drive board has failed.</li> <li>The control board has failed.</li> </ol>                    | <ul><li>the control board and the drive board.</li><li>2. Replace the communication</li></ul>                                                                                                                                                                                                 |                                                                         |

#### Table 23: Outdoor unit fault codes

| Fault<br>code | Fault description                                | Possible reasons for fault                                                                                                                                                                                                                                                  | Resolution                                                                                                                                                                                                                                       | Comments |
|---------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 47            | Excessive discharge<br>temperature fault         | <ol> <li>Low refrigerant charge.</li> <li>Low charge due to extended<br/>lineset.</li> <li>Metering system failure.</li> <li>Excessive outdoor ambient<br/>temperature.</li> </ol>                                                                                          | <ol> <li>Check for leaks.</li> <li>Correct the refrigerant<br/>charge.</li> <li>Replace the metering devices.</li> <li>Normal protection.</li> </ol>                                                                                             |          |
| 48            | Outdoor DC fan motor<br>fault (upper fan motor)  | <ol> <li>The DC fan motor connection<br/>is poor.</li> <li>The wiring to the DC fan<br/>motor has failed.</li> <li>The DC fan motor has failed.</li> <li>The drive circuit of the upper<br/>DC fan motor has failed.</li> <li>Outdoor airflow blockage.</li> </ol>          | <ol> <li>Replace the DC fan motor<br/>wiring.</li> <li>Replace the DC fan motor.</li> <li>Replace the DC fan motor.</li> <li>Replace the drive board of the<br/>fan motor.</li> <li>Resolve the outdoor unit<br/>airflow restriction.</li> </ol> |          |
| 49            | Outdoor DC fan motor<br>fault (lower fan motor)  | <ol> <li>The DC fan motor connection<br/>is poor.</li> <li>The wiring to the DC fan<br/>motor has failed.</li> <li>The DC fan motor has failed.</li> <li>The drive circuit of the lower<br/>DC fan motor has failed.</li> <li>Outdoor airflow blockage.</li> </ol>          | <ol> <li>Replace the DC fan motor<br/>wiring.</li> <li>Replace the DC fan motor.</li> <li>Replace the DC fan motor.</li> <li>Replace the drive board of the<br/>fan motor.</li> <li>Resolve the outdoor unit<br/>airflow restriction.</li> </ol> |          |
| 91            | Unit stops due to IPM<br>board overheating fault | <ol> <li>The outdoor ambient<br/>temperature is too high.</li> <li>The speed of the outdoor fan<br/>motor is too low.</li> <li>The outdoor unit is not<br/>installed in accordance with<br/>the installation instructions.</li> <li>The supply power is too low.</li> </ol> | <ol> <li>Normal protection.</li> <li>Check the fan motor and<br/>replace if necessary.</li> <li>Reinstall the outdoor unit<br/>in accordance with the<br/>installation instructions.</li> <li>Normal protection.</li> </ol>                      |          |
| 96            | Low charge                                       | Inadequate system charge                                                                                                                                                                                                                                                    | Recover the refrigerant and charge<br>the refrigerant. Refer to the <i>Tabular</i><br><i>Data Sheet</i> .                                                                                                                                        |          |
| 97            | 4-way valve failure                              | <ol> <li>The connecting wiring of the<br/>4-way valve coil is poor.</li> <li>The 4-way valve coil has<br/>failed.</li> <li>The 4-way valve has failed.</li> <li>The drive board of the 4-way<br/>valve has failed.</li> </ol>                                               | <ol> <li>Repair the wiring of the 4-way<br/>valve.</li> <li>Replace the 4-way valve coil.</li> <li>Replace the 4-way valve.</li> <li>Replace the drive board of the<br/>4-way valve.</li> </ol>                                                  |          |

#### (i) Note:

- If the indoor unit fails to start or the indoor unit stops after 30 s and the unit does not display the fault code, check the voltage and connection to the control board.
- Verify indoor unit control operation and setup.

#### Table 24: Overload in cooling mode

| No. | Cause                                                               | Resolution                                                   |
|-----|---------------------------------------------------------------------|--------------------------------------------------------------|
| 1   | The refrigerant is excessive.                                       | Recover the refrigerant, and recharge the refrigerant        |
|     |                                                                     | referring to the rating label.                               |
| 2   | The outdoor ambient temperature is too high.                        | Use within allowable temperature range.                      |
| 2   | Short-circuit occurs in the air outlet and air inlet of the outdoor | Adjust the installation of the outdoor unit referring to the |
| 5   | unit.                                                               | installation instructions.                                   |
| 4   | The outdoor heat exchanger is dirty.                                | Clean the heat exchanger of the outdoor unit.                |

#### Table 24: Overload in cooling mode

| No. | Cause                                            | Resolution                                           |
|-----|--------------------------------------------------|------------------------------------------------------|
| 5   | The speed of the outdoor fan motor is too low.   | Check the outdoor fan motor operation and replace if |
| 5   |                                                  | necessary.                                           |
| 6   | The outdoor fan is damaged or blocked.           | Check the outdoor fan.                               |
| 7   | The air inlet and/or outlet has been blocked.    | Remove the obstructions.                             |
| 8   | The expansion valve or the capillary has failed. | Replace the expansion valve or the capillary.        |

#### Table 25: Overload in heating mode

| No. | Cause                                                                    | Resolution                                           |
|-----|--------------------------------------------------------------------------|------------------------------------------------------|
| 1   |                                                                          | Recover the refrigerant, and recharge the            |
| '   | The refrigerant is excessive.                                            | refrigerant referring to the rating label.           |
| 2   | The indoor ambient temperature is too high.                              | Use within allowable temperature range.              |
| 2   | Short-circuit occurs in the air outlet and air inlet of the indoor unit. | Adjust the installation of the indoor unit referring |
| 5   |                                                                          | to the installation instructions.                    |
| 4   | The indoor filter is dirty.                                              | Clean the indoor filter.                             |
| 5   | The speed of the indoor fan motor is too low.                            | Check the indoor fan motor speed setting.            |
| 6   | The indoor fan is not operating correctly.                               | Check the indoor fan.                                |
| 7   | The air inlet and/or outlet has been blocked.                            | Remove the obstructions.                             |
| 8   | The expansion valve or the capillary fails.                              | Replace the expansion valve or the capillary.        |

#### Table 26: Drive fault code - 24k and 36k

| Fault code  | Fault description                                                                                               | Possible reasons for fault                                                                                          | Resolution                                                                                             |
|-------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3 | Inverter DC voltage overload<br>fault<br>Inverter DC low-voltage fault<br>Inverter AC current overload<br>fault | <ol> <li>The power supply input is too high or<br/>too low.</li> <li>Drive board fault.</li> </ol>                  | <ol> <li>Check the power supply.</li> <li>Change the drive board.</li> </ol>                           |
| 4           | Out-of-step detection                                                                                           |                                                                                                                     | 1. Check the compressor wire                                                                           |
| 5           | Loss phase detection fault<br>(speed pulsation)                                                                 | <ol> <li>Compressor phase lost.</li> <li>Bad drive board components.</li> </ol>                                     | <ol> <li>Check the compressor whe<br/>connection.</li> <li>Change the drive board.</li> </ol>          |
| 6           | Loss phase detection fault<br>(current imbalance)                                                               | 3. Compressor insulation fault.                                                                                     | 3. Change the compressor.                                                                              |
| 7           | Inverter IPM fault (edge)                                                                                       | 1. System overload or current overload.                                                                             | 1. Check the system.                                                                                   |
| 8           | Inverter IPM fault (level)                                                                                      | 2. Drive board fault.                                                                                               | <ol> <li>Check the system.</li> <li>Change the drive board.</li> <li>Change the compressor.</li> </ol> |
| 9           | PFC_IPM IPM fault (edge)                                                                                        | 3. Compressor oil shortage, serious                                                                                 |                                                                                                        |
| 10          | PFC_IPM IPM fault (level)                                                                                       | wear of crankshaft.<br>4. Compressor insulation fault.                                                              | 4. Change the compressor.                                                                              |
| 11          | PFC power detection of failure                                                                                  | <ol> <li>The power supply is not stable.</li> <li>Instantaneous power off.</li> <li>Drive board failure.</li> </ol> | <ol> <li>Check the power supply.</li> <li>N/A</li> <li>Change the drive board.</li> </ol>              |
| 12          | PFC overload current detection of failure                                                                       | <ol> <li>System overload, current is too high.</li> <li>Drive board fails.</li> <li>PFC fails.</li> </ol>           | <ol> <li>Check the system.</li> <li>Change the drive board.</li> <li>Change the PFC.</li> </ol>        |
| 13          | DC voltage detected abnormal                                                                                    | 1. The input voltage is too high or too                                                                             | 1. Check the power supply.                                                                             |
| 14          | PFC LOW voltage detected failure                                                                                | low.<br>2. Drive board fails.                                                                                       | <ol> <li>Change the drive board.</li> </ol>                                                            |

#### Table 26: Drive fault code - 24k and 36k

| Fault code | Fault description                                      | Possible reasons for fault                                                                                                        | Resolution                                                                                                                                                     |
|------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15         | AD offset abnormal detected failure                    |                                                                                                                                   |                                                                                                                                                                |
| 16         | Inverter PWM logic set fault                           |                                                                                                                                   |                                                                                                                                                                |
| 47         | Inverter PWM initialization                            |                                                                                                                                   |                                                                                                                                                                |
| 17         | failure                                                | Drive heard fails                                                                                                                 | Chapter the drive heard                                                                                                                                        |
| 18         | PFC_PWM logic set fault                                | Drive board fails.                                                                                                                | Change the drive board.                                                                                                                                        |
| 19         | PFC_PWM initialization fault                           |                                                                                                                                   |                                                                                                                                                                |
| 20         | Temperature abnormal                                   |                                                                                                                                   |                                                                                                                                                                |
| 21         | Shunt resistance unbalance<br>adjustment fault         |                                                                                                                                   |                                                                                                                                                                |
| 22         | Communication failure                                  | <ol> <li>Communication wire connection is<br/>poor.</li> <li>Drive board fails.</li> <li>Control board fails.</li> </ol>          | <ol> <li>Check the wiring.</li> <li>Change the drive board.</li> <li>Change the control board.</li> </ol>                                                      |
| 23         | Incorrect motor parameters                             | Initialization is abnormal.                                                                                                       | Reset the power supply.                                                                                                                                        |
| 26         | DC voltage mutation error                              | <ol> <li>The power input changes suddenly.</li> <li>Drive board fails.</li> </ol>                                                 | <ol> <li>Check the power supply to provide<br/>stable power supply.</li> <li>Change the drive board.</li> </ol>                                                |
| 27         | D axis current control error                           | <ol> <li>System overload, phase current is too<br/>high.</li> <li>Drive board fails.</li> </ol>                                   | <ol> <li>Check the system to see if it works<br/>normally.</li> <li>Check the stop valve to see if it is<br/>open.</li> <li>Change the drive board.</li> </ol> |
| 28         | Q axis current control error                           | <ol> <li>System overloads, phase current is<br/>too high.</li> <li>Drive board fails.</li> </ol>                                  | <ol> <li>Check the system to see if it works<br/>normally.</li> <li>Check the stop valve to see if it is<br/>open.</li> <li>Change the drive board.</li> </ol> |
| 29         | Saturation error of D axis<br>current control integral | <ol> <li>Momentary system overload.</li> <li>The compressor parameter is not<br/>suitable.</li> <li>Drive board fails.</li> </ol> | <ol> <li>Check the system to see if it works<br/>normally.</li> <li>Check the stop valve to see if it is<br/>open.</li> <li>Change the drive board.</li> </ol> |
| 30         | Saturation error of Q axis<br>current control integral | <ol> <li>Momentary system overload.</li> <li>The compressor parameter is not<br/>suitable.</li> <li>Drive board fails.</li> </ol> | <ol> <li>Check the system to see if it works<br/>normally.</li> <li>Check the stop valve to see if it is<br/>open.</li> <li>Change the drive board.</li> </ol> |
| 35         | EE data abnormal                                       | Driver board EEPROM is abnormal.                                                                                                  | <ol> <li>Change the EEPROM.</li> <li>Change the drive board.</li> </ol>                                                                                        |

#### Table 27: Drive fault code - 48k and 60k

| Fault code | Fault description                                                  | Possible reasons for fault                                                                                                                                                                                                                                                              | Resolution                                                                                                                                                                                                                                                      |
|------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                    | 1. The compressor wire connection is                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                 |
| 1          | Q axis current detection, failure<br>in drive control              | <ul> <li>poor.</li> <li>2. Bad drive board components.</li> <li>3. The compressor start load is too<br/>large.</li> <li>4. Compressor demagnetization.</li> <li>5. Compressor oil shortage, serious<br/>wear of crankshaft</li> <li>6. The compressor insulation has failed.</li> </ul> | <ol> <li>Check the wire of the compressor.</li> <li>Change the drive board.</li> <li>Allow pressures to equalize and then<br/>resume unit operation.</li> <li>Change the compressor.</li> <li>Change the compressor.</li> <li>Change the compressor.</li> </ol> |
| 2          | Phase current detection, failure<br>in drive control               | <ol> <li>Compressor voltage default phase.</li> <li>Bad drive board components.</li> <li>The compressor insulation has failed.</li> </ol>                                                                                                                                               | <ol> <li>Check the compressor wire<br/>connection.</li> <li>Change the drive board.</li> <li>Change the compressor.</li> </ol>                                                                                                                                  |
| 3          | Initialization, phase current<br>imbalance                         | Bad drive board components.                                                                                                                                                                                                                                                             | Change the drive board.                                                                                                                                                                                                                                         |
| 4          | Speed estimation, failure in drive control                         | <ol> <li>Bad drive board components.</li> <li>Compressor shaft clamping.</li> <li>The compressor insulation has failed.</li> </ol>                                                                                                                                                      | <ol> <li>Change the drive board.</li> <li>Change the compressor.</li> <li>Change the compressor.</li> </ol>                                                                                                                                                     |
| 5          | IPM FO output fault                                                | <ol> <li>System overload or current overload.</li> <li>Drive board fails.</li> <li>Compressor oil shortage, serious<br/>wear of crankshaft.</li> <li>The compressor insulation has failed.</li> </ol>                                                                                   | <ol> <li>Check the outdoor section system.</li> <li>Change the drive board.</li> <li>Change the compressor.</li> <li>Change the compressor.</li> </ol>                                                                                                          |
| 6          | Communication between drive<br>board and control board fault       | <ol> <li>Communication wire connection is<br/>poor.</li> <li>Drive board fault.</li> <li>Control board fault.</li> </ol>                                                                                                                                                                | <ol> <li>Check the wiring.</li> <li>Change the drive board.</li> <li>Change the control board.</li> </ol>                                                                                                                                                       |
| 7          | AC voltage, overload voltage                                       | <ol> <li>The supply voltage input is too high<br/>or too low.</li> <li>Drive board fails.</li> </ol>                                                                                                                                                                                    | <ol> <li>Check the power supply.</li> <li>Change the drive board.</li> </ol>                                                                                                                                                                                    |
| 8          | DC voltage, overload voltage                                       | <ol> <li>The supply voltage input is too high.</li> <li>Drive board fault.</li> </ol>                                                                                                                                                                                                   | <ol> <li>Check the power supply.</li> <li>Change the drive board.</li> </ol>                                                                                                                                                                                    |
| 9          | AC voltage imbalance                                               | Drive board fails.                                                                                                                                                                                                                                                                      | Change the drive board.                                                                                                                                                                                                                                         |
| 10         | PFC current detection circuit fault before compressor is <b>ON</b> | Bad drive board components.                                                                                                                                                                                                                                                             | Change the drive board.                                                                                                                                                                                                                                         |
| 11         | AC voltage supply out of range                                     | <ol> <li>Power supply abnormal, power<br/>frequency out of range.</li> <li>Drive board fails.</li> </ol>                                                                                                                                                                                | <ol> <li>Check the system.</li> <li>Change the drive board.</li> </ol>                                                                                                                                                                                          |
|            | Products of single-phase PFC<br>overcurrent, FO output low level   | <ol> <li>System overload, current is too large.</li> <li>Drive board fault.</li> <li>PFC fault.</li> </ol>                                                                                                                                                                              | <ol> <li>Check the system.</li> <li>Change the drive board.</li> <li>Change PFC.</li> </ol>                                                                                                                                                                     |
| 12         | Inverter overcurrent (3-phase power supply outdoor sections)       | <ol> <li>System overload, current is too large.</li> <li>Drive board fault.</li> <li>Compressor oil shortage, serious<br/>wear of crankshaft.</li> <li>The compressor insulation has failed.</li> </ol>                                                                                 | <ol> <li>Check the system.</li> <li>Change the drive board.</li> <li>Change the compressor.</li> <li>Change the compressor.</li> </ol>                                                                                                                          |
| 13         | Inverter overcurrent                                               | <ol> <li>System overload, current is too large.</li> <li>Drive board fault.</li> <li>Compressor oil shortage, serious<br/>wear of crankshaft.</li> <li>The compressor insulation has failed.</li> </ol>                                                                                 | <ol> <li>Check the system.</li> <li>Change the drive board.</li> <li>Change the compressor.</li> <li>Change the compressor.</li> </ol>                                                                                                                          |

#### Table 27: Drive fault code - 48k and 60k

| Fault code | Fault description                                                                                                     | Possible reasons for fault                                                                                                                                          | Resolution                                                                                                                                                           |
|------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | PFC overcurrent (single-phase outdoor section)                                                                        | <ol> <li>System overload, current is too large.</li> <li>Drive board fault.</li> <li>PFC fault.</li> </ol>                                                          | <ol> <li>Check the system.</li> <li>Change the drive board.</li> <li>Change PFC.</li> </ol>                                                                          |
| 14         | Phase imbalance, phase loss,<br>or instantaneous power failure<br>(only for 3-phase power supply<br>outdoor sections) | <ol> <li>3-phase voltage imbalance.</li> <li>3-phase power supply phase lost.</li> <li>The power supply wiring is incorrect.</li> <li>Drive board fault.</li> </ol> | <ol> <li>Check the power supply.</li> <li>Check the power supply.</li> <li>Check the power supply wiring<br/>connection.</li> <li>Change the drive board.</li> </ol> |
| 15         | Instantaneous power off<br>detection                                                                                  | <ol> <li>The power supply is not stable.</li> <li>Instantaneous power failure.</li> <li>Drive board fault.</li> </ol>                                               | <ol> <li>Check the power supply.</li> <li>No fault.</li> <li>Change the drive board.</li> </ol>                                                                      |
| 16         | Low DC voltage 200 V                                                                                                  | <ol> <li>The voltage input is too low.</li> <li>Drive board fault.</li> </ol>                                                                                       | <ol> <li>Check the power supply.</li> <li>Change the drive board.</li> </ol>                                                                                         |
| 18         | Driver board read EE data error                                                                                       | <ol> <li>EEPROM has no data or data error.</li> <li>EEPROM circuit fault.</li> </ol>                                                                                | <ol> <li>Change the EEPROM component.</li> <li>Change the drive board.</li> </ol>                                                                                    |
| 19         | PFC chip receives data fault                                                                                          | Abnormal communication loop.                                                                                                                                        | Change the drive board.                                                                                                                                              |
| 20         | PFC soft start abnormally                                                                                             | Abnormal PFC drive loop.                                                                                                                                            | Change the drive board.                                                                                                                                              |
| 21         | Compressor drive chip could not receive data from PFC chip                                                            | Communication loop fault.                                                                                                                                           | Change the drive board.                                                                                                                                              |

# Troubleshooting guide

#### Table 28: Troubleshooting for normal malfunction

| Malfunction                                                                              | Possible reasons for malfunction                                                                                                                                                                                                                                        | Suggested action                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Outdoor section does not start                                                           | <ol> <li>Power supply failure.</li> <li>Trip of breaker or open fuse.</li> <li>Supplied voltage is too low.</li> <li>Incorrect setting of the thermostat.</li> <li>No power to the thermostat.</li> </ol>                                                               | <ol> <li>Check the power supply circuit.</li> <li>Measure the insulation resistance to ground<br/>to see if there is any leakage.</li> <li>Check if there is a defective contact or<br/>leakage current in the power supply circuit.</li> <li>Check and set the thermostat.</li> <li>Check the thermostat and thermostat wiring.</li> </ol> |
| Compressor starts or stopsThe air inlet and/or outlet has been blocked or<br>restricted. |                                                                                                                                                                                                                                                                         | Remove the blockage.                                                                                                                                                                                                                                                                                                                        |
| Poor cooling/heating                                                                     | <ol> <li>The outdoor heat exchanger is dirty.</li> <li>Air leakage into the conditioned space or<br/>excessive load due to persons entering and<br/>exiting frequently.</li> <li>Blockage of outdoor heat exchanger.</li> <li>Incorrect temperature setting.</li> </ol> | <ol> <li>Clean the heat exchanger of the outdoor unit.</li> <li>Keep certain air tightness indoors.</li> <li>Remove the blockage.</li> <li>Check and try to set the temperature again.</li> </ol>                                                                                                                                           |
| Sound from deforming parts libe heard. This is due to thermal deformation of             |                                                                                                                                                                                                                                                                         | Note that this is normal and the sound disappears quickly.                                                                                                                                                                                                                                                                                  |
| Water leakage                                                                            | <ol> <li>The drainage pipe is blocked or broken.</li> <li>The insulation of the refrigerant piping is<br/>inadequate.</li> </ol>                                                                                                                                        | <ol> <li>Change the drainage pipe.</li> <li>Correct the refrigeration piping insulation.</li> </ol>                                                                                                                                                                                                                                         |

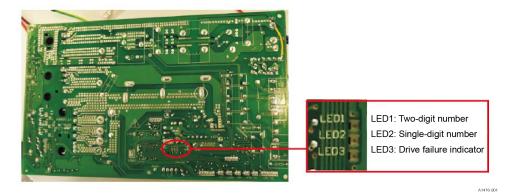
#### LED-displayed fault codes - HMH72B24 and HMH72B36

Fault codes are displayed by LED lamps on the outdoor main control board (**DC - inverter unitary**). Remove the system top cover to expose the indicator LED lamps.

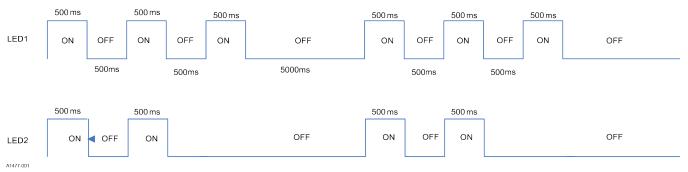
There are three LED lamps on the main control board:

- LED1 indicates the fault code represented by a twodigit number.
- LED2 indicates the fault code represented by a singledigit number.
- LED3 indicates an outdoor drive control fault.
- When LED3 is off, LED1 and LED 2 indicate the main control fault code.

When LED3 is on, LED1 and LED 2 indicate the drive control fault code.


When LED3 is flashing, and LED1 and LED 2 are both off, it indicates the compressor is preheating.

Failures display with 5-s intervals. This means the LED is off for 5 s to report the next fault code.


#### Figure 37: LED lamps

The system protection code display method is the same as the main control fault code.

LED lamps are off when there is no failure, protection, or preheating.



#### Figure 38: Example - outdoor main control fault 32



#### Figure 39: Example - outdoor drive fault 32

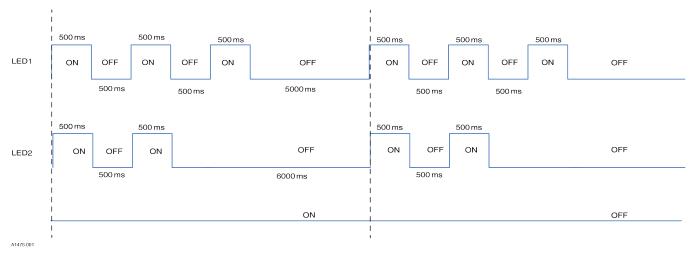
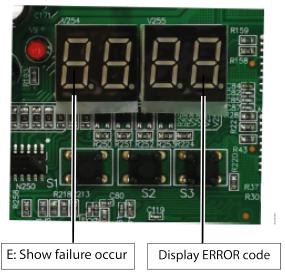
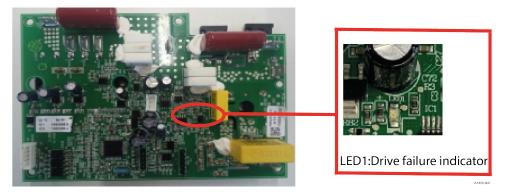





Figure 40: Main control fault display - HMH72B48 and HMH72B60



**Note:** The fault code is displayed by the 7-segment display on the main control board.

#### Figure 41: Drive fault code display



#### (i) Note:

- The lamp of the drive board flashing shows that a failure has occurred.
- The number of times the drive failure lamp flashes shows the failure code.

# Control logic description

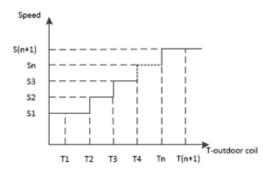
#### Control of the indoor and outdoor units:

Control of the indoor and outdoor sections is achieved through 24 V AC signals connected as shown in figure below. The thermostat controls the operation of the outdoor section through the Y and B lines. If Y is energized, the outdoor unit starts in cooling mode; if both Y and B are energized, the outdoor unit starts in heating mode. When the outdoor unit determines defrost is necessary in heating mode, W is energized, and when defrost mode exits, W is de-energized.

#### **Cooling mode**

#### Starting conditions:

When Y signal is energized and B terminal is deenergized, the unit starts in cooling mode.


When the unit starts in cooling mode, the compressor adjusts operating frequency according to the system

pressure verses a target pressure. If the actual pressure is higher than the target pressure, the compressor frequency increases; if the actual pressure is lower than the target pressure, the compressor frequency decreases (when the target pressure is reached, the compressor frequency is stable).

The outdoor fan operates in the following fashion:

- A single outdoor fan first operates in a steady state for a short time and then regulates the speed according to the outdoor-coil temperature.
- For a double outdoor fan, the upper fan regulates the speed according to preset conditions and the lower fan speed adjusts according to the outdoor-coil temperature.

#### Figure 42: Operating speed - cooling mode



Stopping conditions:

When Y signal is de-energized the control operates as follows:

The compressor continues to operate at the current frequency while monitoring suction pressure.

If the pressure drops more than than 6 psi in 10 s, the compressor stops.

If the pressure changes less than 6 psi in 10 s, the compressor continues to operate and adjusts compressor speed to achieve a suction pressure 29 psi higher than the original pressure. While in this mode, the control algorithms remain in effect for OD fan speed, oil-return, and compressor protections.

The unit continues to operate with the adjusted suction pressure target for up to 30 min. If the Y signal is energized again during this time period (B de-energized), the unit returns to normal operation with normal operating parameters restored.

#### **Heating mode**

Starting conditions:

When Y signal is energized with B energized, the unit starts in heating mode.

When the unit starts in heating mode, the compressor adjusts operating frequency according to the system actual verses target pressure. If the actual pressure is higher than the target pressure, the compressor frequency decreases; if the actual pressure is lower than the target pressure, the compressor frequency increases (when the target pressure is reached, the compressor frequency is stable).

Stopping conditions:

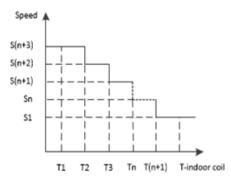
When Y and B signals are de-energized, the control operates as follows:

The compressor continues to operate at the current frequency while monitoring liquid pressure.

If the pressure exceeds 522 psi or rises more than 14 psi in 10 s, the compressor stops.

If the pressure changes less than 14 psi in 10 s, the compressor continues to operate and adjusts compressor speed to achieve a liquid pressure 43 psi lower than the original pressure. While in this mode, the control algorithms remain in effect for OD fan speed, EEV, oilreturn, and compressor protections.

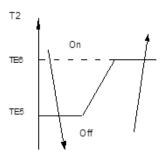
The unit continues to operate with the adjusted liquid pressure target for up to 30 min. If the Y signal is energized again during this time period (with B


energized), the unit returns to normal operation with normal operating parameters restored.

#### **Outdoor fan control**

The outdoor fan operates in the following fashion:

- A single outdoor fan first operates in a steady state for a short time and then regulates the speed according to the saturated temperature.
- For a double outdoor fan, the upper fan regulates the speed according to preset conditions and the lower fan speed adjusts according to the saturated temperature.

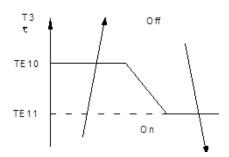

#### Figure 43: Operating speed - heating mode



#### Evaporator low-temperature protection

The OD unit enters evaporator low-temperature protection if the following condition occurs:

# Figure 44: Entering evaporator low-temperature protection




Condition 1: Cooling mode - When the sensed suction pressure (T2) remains lower than the lower threshold (TE5) for 120 s, the outdoor unit stops. When T2 rises to the upper threshold (TE6), the outdoor unit restarts.

#### **Condenser high-temperature protection**

The OD unit will enter condenser high-temperature protection if any of the following conditions occurs:

Figure 45: Entering condenser high-temperature protection



Condition 1: Cooling mode - If the outdoor coil temperature (T3) exceeds the upper threshold (T10) for 10 s, the outdoor unit stops. When the outdoor coil temperature falls below the lower threshold (T11) the outdoor unit restarts.

Condition 2: Heating mode - Similar to cooling, when the sensed liquid pressure exceeds the upper threshold for 10 s, the outdoor unit stops. When the pressure falls below the lower threshold, the outdoor unit restarts.